Skip to main content
Log in

A reformulation of the Siegel series and intersection numbers

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we will explain a conceptual reformulation and inductive formula of the Siegel series. Using this, we will explain that both sides of the local intersection multiplicities of Gross and Keating (Invent Math 112(225–245):2051, 1993) and the Siegel series have the same inherent structures, beyond matching values. As an application, we will prove a new identity between the intersection number of two modular correspondences over \(\mathbb {F}_p\) and the sum of the Fourier coefficients of the Siegel-Eisenstein series for \(\mathrm {Sp}_4/\mathbb {Q}\) of weight 2, which is independent of \(p \left( > 2\right) \). In addition, we will explain a description of the local intersection multiplicities of the special cycles over \(\mathbb {F}_p\) on the supersingular locus of the ‘special fiber’ of the Shimura varieties for \(\mathrm {GSpin}(n,2), n\le 3\) in terms of the Siegel series directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Remark in page 444 of [21] says ‘it seems very interesting problem to prove Theorems 4.1 and 4.2 directly from the local theory of quadratic forms’. Here, Theorems 4.1 and 4.2 are main results of [21], which give an explicit formula of the Siegel series over \(\mathbb {Z}_p\). Our method can be understood in the spirit of the problem proposed by Katsurada.

  2. This proof was informed by the referee.

  3. Indeed Ikeda and Katsurada assume that \(p=2\) in Theorem 3.3, loc. cit. But this theorem also holds for \(p>2\) and it was explained in the initial version of their paper posted on arXiv.

References

  1. Argos seminar on intersections of modular correspondences: held at the University of Bonn, Bonn, 2003–2004. Astérisque No. 312 (2007)

  2. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron models. Ergeb. Math. Grenzgeb 3, 21 (1990) (Springer, Berlin)

  3. Bruinier, J., Yang, T.: Arithmetic degrees of special cycles and derivatives of Siegel Eisenstein series. arXiv:1802.09489 (2019)

  4. Bouw, I.I.: Invariants of ternary quadratic forms. Astérisque 312, 113–137 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Cho, S.: Group schemes and local densities of quadratic lattices in residue characteristic 2. Compos. Math. 151, 793–827 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cho, S.: Group schemes and local densities of ramified hermitian lattices in residue characteristic 2—part I. Algebra Number Theory 10–3, 451–532 (2016)

    Article  MathSciNet  Google Scholar 

  7. Cho, S., Ikeda, T., Katsurada, H., Yamauchi, T.: An inductive formula of the Gross-Keating invariant of a quadratic form (preprint) (2019)

  8. Cho, S., Ikeda, T., Katsurada, H., Yamauchi, T.: Remarks on the Extended Gross-Keating data and the Siegel series of a quadratic form. arXiv:1709.02772 (2019)

  9. Clark, P.: Lectures on Shimura curves 1: endomorphisms of elliptic curves. http://math.uga.edu/pete/SC1-endomorphisms.pdf (2019)

  10. Conrad, B.: Private communication in April 2017 (2017)

  11. Durfee, W.H.: Congruence of quadratic forms over valuation rings. Duke Math. J. 11, 687–697 (1944)

    Article  MathSciNet  Google Scholar 

  12. Gan, W.T., Yu, J.-K.: Group schemes and local densities. Duke Math. J. 105, 497–524 (2000)

    Article  MathSciNet  Google Scholar 

  13. Gross, B.-H.: On canonical and quasi-canonical liftings. Invent Math. 84, 321–326 (1986)

    Article  MathSciNet  Google Scholar 

  14. Gross, B.-H., Keating, K.: On the intersection of modular correspondences. Invent Math. 112, 225–245 (1993)

    Article  MathSciNet  Google Scholar 

  15. Görtz, U.: A sum of representation numbers. Astérisque 312, 9–14 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Görtz, U.: Arithmetic intersection numbers. Astérisque 312, 15–24 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Hanke, J.P.: An Exact Mass Formula for Orthogonal Groups Over Number Fields, Ph.D. Dissertation. Princeton University Press, Princeton (1999)

    Google Scholar 

  18. Ikeda, T.: On the functional equation of the Siegel series. J. Number Theory 172, 44–62 (2017)

    Article  MathSciNet  Google Scholar 

  19. Ikeda, T., Katsurada, H.: On the Gross-Keating invariant of a quadratic form over a non-archimedean local field. arXiv:1504.07330 (to appear in Amer. J. Math) (2019)

  20. Ikeda, T., Katsurada, H.:Explicit formula for the Siegel series of a half-integral matrix over the ring of integers in a non-archimedian local field. arXiv:1602.06617 (2019)

  21. Katsurada, H.: An explicit formula for Siegel series. Am. J. Math. 121, 415–452 (1999)

    Article  MathSciNet  Google Scholar 

  22. Katz, N.: Serre-Tate local moduli, surfaces algébriques. In: Lect. Notes in Math., vol. 868, Springer, Berlin, pp. 138–202 (1981)

  23. Katz, N., Mazur, B.: Arithmetic moduli of elliptic curves. Annals of Mathematics Studies, vol 108. Princeton University Press, Princeton, NJ, pp. xiv+514 (1985)

  24. Kitaoka, Y.: A note on local densities of quadratic forms. Nagoya Math. J. 92, 145–152 (1983)

    Article  MathSciNet  Google Scholar 

  25. Kitaoka, Y.: Arithmetic of Quadratic Forms, Cambridge Tracts in Math, vol. 106. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  26. Kudla, S.: Central derivatives of Eisenstein series and height pairings. Ann. Math. 146(3), 545–646 (1997)

    Article  MathSciNet  Google Scholar 

  27. Kudla, S., Rapoport, M.: Arithmetic of Hirzebruch-Zagier cycles. J. Reine Angew. Math. 515, 155–244 (1999)

    Article  MathSciNet  Google Scholar 

  28. Kudla, S., Rapoport, M.: Cycles on Siegel 3-folds and derivatives of Eisenstein series. Ann. Sci. École Norm. Sup. 33(5), 695–756 (2000)

    Article  MathSciNet  Google Scholar 

  29. Kudla, S., Rapoport, M., Yang, T.: On the derivative of an Eisenstein series of weight one. Int. Math. Res. Not. 7, 347–385 (1999)

    Article  MathSciNet  Google Scholar 

  30. Kudla, S., Rapoport, M., Yang, T.: Modular Forms and Special Cycles on Shimura Curves, Annals of Mathematics Studies, vol. 161. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  31. Lang, S.: Elliptic functions. With an appendix by J. Tate. Graduate Texts in Mathematics, vol. 112, Second edn. Springer, New York (1987)

    Google Scholar 

  32. Li, C., Zhang, W.: Kudla-Rapoport cycles and derivatives of local densities. arXiv:1908.01701 (2019)

  33. Meusers, V.: Canonical and quasi-canonical liftings in the split case. Astérisque 312, 87–98 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Nagaoka, S.: A note on the Siegel-Eisenstein series of weight 2 on \(\text{ Sp }_2(\mathbb{Z})\). Manuscripta Math. 77(1), 71–88 (1992)

    Article  MathSciNet  Google Scholar 

  35. O’Meara, O.T.: Introduction to Quadratic Forms, reprint of 1973 ed., Classics Math. Springer, Berlin (2000)

    Google Scholar 

  36. Oort, F.: Finite group schemes, local moduli for abelian varieties, and lifting problems. Compos. Math. 23, 265–296 (1971)

    MathSciNet  MATH  Google Scholar 

  37. Popa, M.: Course on p-adic and motivic integration, UIC lecture note. https://sites.math.northwestern.edu/~mpopa/571 (2011)

  38. Rapoport, M.: Deformations of isogenies of formal groups. Astérisque 312, 139–169 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Robert, A.-M.: A Course in \(p\)-adic Analysis, Graduate Texts in Mathematics, vol. 198. Springer, New York (2000)

    Google Scholar 

  40. Siegel, C.: Über die analytische theorie der quadratischen Formen. Ann. Math. 36, 527–606 (1935)

    Article  MathSciNet  Google Scholar 

  41. Silverman, J.: The Arithmetic of Elliptic Curves, Second edition, Graduate Texts in Mathematics, p. xx+513. Springer, Dordrecht (2009)

    Book  Google Scholar 

  42. Tamagawa, T.: Adéles, algebraic groups and discontinuous subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), vol. 9, Amer. Math. Soc., Providence, R.I., pp. 113-121 (1966)

  43. Vogel, G.: Modular polynomials. Astérisque 312, 1–7 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Wedhorn, T.: Calculation of representation densities. Astérisque 312, 179–190 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Wedhorn, T.: The genus of the endomorphisms of a supersingular elliptic curve. Astérisque 312, 25–47 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Weil, A.: Adeles and algebraic groups, progress in mathematics, vol. 23, Birkhäuser, Boston Mass, pp. iii+126 (1982)

  47. Yang, T.: An explicit formula for local densities of quadratic forms. J. Number Theory 72, 309–356 (1998)

    Article  MathSciNet  Google Scholar 

  48. Yang, T.: Local densities of 2-adic quadratic forms. J. Number Theory 108, 287–345 (2004)

    Article  MathSciNet  Google Scholar 

  49. Yokoyama, S.: Private communication in March 2017 (2017)

  50. Yu, J.-K.: On the moduli of quasi-canonical liftings. Compos. Math. 96(3), 293–321 (1995)

    MathSciNet  MATH  Google Scholar 

  51. Yu, J.-K.: Tamagawa number Purdue lecture note (2008)

Download references

Acknowledgements

We would like to express our deep appreciation to Professors T. Ikeda and H. Katsurada for many fruitful discussions and suggestions. We also thank Professors B. Conrad, B. Gross, B. Howard, R. Schulze-Pillot, and W. Zhang for helpful discussions and corrections in Theorems 1.4 and 4.9. Special thanks are own to Professor S. Yokoyama for computing intersection numbers for modular correspondences over both a finite field and the complex field in Appendix and also to Professor Chul-hee Lee for pointing out our mistakes on the table in Appendix. Finally we thank the referee for helpful suggestions and comments which substantially helped with the presentation of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungmun Cho.

Additional information

Communicated by Wei Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sungmun Cho was supported by JSPS KAKENHI Grant No. 16F16316, Samsung Science and Technology Foundation under Project Number SSTF-BA1802-03, and NRF 2018R1A4A 1023590.

Takuya Yamauchi is partially supported by JSPS KAKENHI Grant Number (B) No. 19H01778.

Appendix A: The table of intersection numbers

Appendix A: The table of intersection numbers

Table 1 Intersection numbers

For each positive integer m we denote by \(\psi _{m/n^2}\) the polynomial in \(\mathbb {Z}[x,y]\) which appears as a factor of \(\varphi _m=\displaystyle \prod \nolimits _{n^2|m}\psi _{m/n^2}\) (cf. p.2 of [43]). In this appendix we give a table for

$$\begin{aligned} \mathrm{dim}_\mathbb {C}\mathbb {C}[x,y]/(\psi _{m_1},\psi _{m_2}),\ \mathrm{dim}_{\mathbb {F}_p}\mathbb {F}_p[x,y]/(\psi _{m_1},\psi _{m_2}) \end{aligned}$$

for \(2\le m_1\le m_2 \le 9\) such that \(m_1m_2\) is not a square and \(2\le p<50\). Yokoyama (cf. [49]) kindly computed both quantities and checked they coincide directly. From this computation with Corollary 7.2 and Theorem 2.1 of [43] it is easy to see that

$$\begin{aligned} (T_{m_1,p},T_{m_2,p})= & {} \sum _{n^2_1|m_1,n^2_2|m_2}\mathrm{dim}_{\mathbb {F}_p}\mathbb {F}_p[x,y]/\left( \psi _{\frac{m_1}{n^2_1}},\psi _{\frac{m_2}{n^2_2}}\right) \\= & {} \sum _{n^2_1|m_1,n^2_2|m_2}\mathrm{dim}_{\mathbb {C}}\mathbb {C}[x,y]/\left( \psi _{\frac{m_1}{n^2_1}},\psi _{\frac{m_2}{n^2_2}}\right) =(T_{m_1,\mathbb {C}},T_{m_2,\mathbb {C}}) \end{aligned}$$

for \(m_1,m_2,p\) above including the case where \(p=2\). Put \(d(m_1,m_2):=\mathrm{dim}_\mathbb {C}\mathbb {C}[x,y]/(\psi _{m_1},\psi _{m_2})=\mathrm{dim}_{\mathbb {F}_p}\mathbb {F}_p[x,y]/(\psi _{m_1},\psi _{m_2})\). We list up all of them as below (Table 1):

Let us remark that \(d(1,m)=d(m,1)=\displaystyle \sum \nolimits _{d|m}\max \{d,\frac{m}{d}\}\). By using this we see, for example, that \((T_{2,p},T_{4,p})=(T_{2,\mathbb {C}},T_{4,\mathbb {C}})=d(2,1)+d(2,4)=4+28=32\) for any \(p<50\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S., Yamauchi, T. A reformulation of the Siegel series and intersection numbers. Math. Ann. 377, 1757–1826 (2020). https://doi.org/10.1007/s00208-020-01999-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-01999-2

Mathematics Subject Classification

Navigation