Skip to main content
Log in

Preparing an ultra-smooth TaW alloy surface with chemical mechanical polishing via controlling galvanic corrosion

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

An ultra-smooth tantalum alloy surface is essential to prepare a high-quality coating. This work employed the chemical mechanical polishing (CMP) technique to process Ta-12W alloy. The effect of H2O2 on the CMP performance was investigated. The results revealed that, as the H2O2 concentration increases at acidic pH, the material removal rate (MRR) of Ta-12W alloy gradually increases while the surface roughness sharply decreases and levels off. After adding 4 wt% H2O2, the surface roughness Sa reaches about 0.4 nm in 97.9 μm × 97.9 μm and 0.068 nm in 1 μm × 1 μm. The surface becomes ultra-smooth, and the substrate remains intact. For the CMP mechanism, adding H2O2 can promote the formation of a relatively uniform and passive film, mainly consisting of evenly distributed tantalum oxides and tungsten oxides, suppressing corrosion. Therefore, the surface quality improves. Compared with hard metallic tantalum and tungsten, their oxides can be removed readily by silica abrasive particles presumably through chemical bonds and mechanical abrasion. Hence, the MRR increases. Additionally, potassium ions may contribute to the removal of tantalum. This study provides a feasible method to attain tantalum alloys of high surface quality for coating.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Knezevic M, Beyerlein IJ, Lovato ML, Tomé CN, Richards AW, McCabe RJ (2014) A strain-rate and temperature dependent constitutive model for BCC metals incorporating non-schmid effects: application to tantalum–tungsten alloys. Int J Plast 62:93–104. https://doi.org/10.1016/j.ijplas.2014.07.007

    Article  CAS  Google Scholar 

  2. Byun TS, Maloy SA (2008) Dose dependence of mechanical properties in tantalum and tantalum alloys after low temperature irradiation. J Nucl Mater 377(1):72–79. https://doi.org/10.1016/j.jnucmat.2008.02.034

    Article  ADS  CAS  Google Scholar 

  3. Pérez-Prado MT, Hines JA, Vecchio KS (2001) Microstructural evolution in adiabatic shear bands in Ta and Ta–W alloys. Acta Mater 49(15):2905–2917. https://doi.org/10.1016/S1359-6454(01)00215-4

    Article  ADS  Google Scholar 

  4. Cardonne SM, Kumar P, Michaluk CA, Schwartz HD (1995) Tantalum and its alloys. Int J Refract Met Hard Mater 13(4):187–194. https://doi.org/10.1016/0263-4368(95)94023-R

    Article  CAS  Google Scholar 

  5. Dong ZH, Peng X, Wang FH (2015) Oxidation of a ZrB2 coating fabricated on Ta–W alloy by electrophoretic deposition and laser melting. Mater Lett 148:76–78. https://doi.org/10.1016/j.matlet.2015.02.075

    Article  CAS  Google Scholar 

  6. Packer CM, Perkins RA (1974) Development of a fused slurry silicide coating for the protection of tantalum alloys. J Less Common Met 37(3):361–378. https://doi.org/10.1016/0022-5088(74)90028-9

    Article  CAS  Google Scholar 

  7. Cai Z, Zhao X, Zhang D, Wu Y, Wen J, Tian G, Cao Q, Tang X, Xiao L, Liu S (2018) Microstructure and oxidation resistance of a YSZ modified silicide coating for Ta–W alloy at 1800 °C. Corros Sci 143:116–128. https://doi.org/10.1016/j.corsci.2018.08.007

    Article  CAS  Google Scholar 

  8. Huang R-x, Qi Z-b, Sun P, Wang Z-c, Wu C-h (2011) Influence of substrate roughness on structure and mechanical property of TiAlN coating fabricated by cathodic arc evaporation. Phys Procedia 18:160–167. https://doi.org/10.1016/j.phpro.2011.06.075

    Article  ADS  CAS  Google Scholar 

  9. Li Z, Qian S, Wang W (2011) Influence of superalloy substrate roughness on adhesion and oxidation behavior of magnetron-sputtered NiCoCrAlY coatings. Appl Surf Sci 257(24):10414–10420. https://doi.org/10.1016/j.apsusc.2011.06.120

    Article  ADS  CAS  Google Scholar 

  10. Stelmakh V, Rinnerbauer V, Chan W, Senkevich J, Joannopoulos J, Soljačić M, Celanovic I (2014) Performance of tantalum-tungsten alloy selective emitters in thermophotovoltaic systems. SPIE, Bellingham

    Google Scholar 

  11. Qiu SR, Wolfe J, Monterrosa A, Steele W, Teslich N, Feit M, Pistor T, Stolz C (2010) Impact of substrate surface scratches on the laser damage resistance of multilayer coatings. Laser damage symposium XLII: annual symposium on optical materials for high power lasers. SPIE, Bellingham

    Google Scholar 

  12. Lee S-C, Ho W-Y (1996) Effect of substrate surface roughness on the characteristics of CrN hard film. Mater Chem Phys 43(3):266–273. https://doi.org/10.1016/0254-0584(95)01636-9

    Article  CAS  Google Scholar 

  13. Takadoum J, Bennani HH (1997) Influence of substrate roughness and coating thickness on adhesion, friction and wear of TiN films. Surf Coat Technol 96(2):272–282. https://doi.org/10.1016/S0257-8972(97)00182-5

    Article  CAS  Google Scholar 

  14. Sheeja D, Tay BK, Lam HM, Ng SK (2002) Effect of surface roughness on the adhesive and tribological characteristics of DLC coating prepared on co–cr–mo alloy. Int J Mod Phys B 16:952–957. https://doi.org/10.1142/s021797920201066x

    Article  ADS  CAS  Google Scholar 

  15. Briant CL, Lassila DH (1999) The effect of tungsten on the mechanical properties of tantalum. J Eng Mater Technol 121(2):172–177. https://doi.org/10.1115/1.2812363

    Article  CAS  Google Scholar 

  16. Hu FQ, Zhang H, Zhao WS, Wang ZL, Hu D, Yu Y (2008) Surface properties of 3000 °C high melting point material by powder mixed EDM. Key Eng Mater 375–376:143–147. https://doi.org/10.4028/www.scientific.net/KEM.375-376.143

    Article  Google Scholar 

  17. Guan J, Qiu Z, Zengqiang Z, Zhai F (2008) Research on precision mirror grinding technology for tantalum alloy. Mach Des Manuf 6:118–119 (in Chinese)

    Google Scholar 

  18. Li Y (2007) Microelectronic applications of chemical mechanical planarization. Wiley, Hoboken

    Book  Google Scholar 

  19. Li J, Liu YH, Dai YJ, Yue DC, Lu XC, Luo JB (2013) Achievement of a near-perfect smooth silicon surface. Sci China Technol Sci 56(11):2847–2853

    Article  ADS  CAS  Google Scholar 

  20. Li Y, Hariharaputhiran M, Babu SV (2001) Chemical–mechanical polishing of copper and tantalum with silica abrasives. J Mater Res 16(4):1066–1073. https://doi.org/10.1557/JMR.2001.0148

    Article  ADS  CAS  Google Scholar 

  21. Li Y, Zhao J, Wu P, Lin Y, Babu SV, Li Y (2006) Interaction between abrasive particles and films during chemical-mechanical polishing of copper and tantalum. Thin Solid Films 497(1–2):321–328. https://doi.org/10.1016/j.tsf.2005.09.189

    Article  ADS  CAS  Google Scholar 

  22. Vijayakumar A, Du T, Sundaram KB, Desai V (2003) Polishing mechanism of tantalum films by SiO2 particles. Microelectron Eng 70(1):93–101. https://doi.org/10.1016/S0167-9317(03)00398-8

    Article  CAS  Google Scholar 

  23. Kuiry SC, Seal S, Fei W, Ramsdell J, Desai H, Li V, Babu Y, Wood SV (2003) Effect of pH and H2O2 on Ta chemical mechanical planarization: electrochemistry and X-ray photoelectron spectroscopy studies. J Electrochem Soc 150(1):C36. https://doi.org/10.1149/1.1528202

    Article  CAS  Google Scholar 

  24. Du T, Tamboli D, Desai V, Chathapuram VS, Sundaram KB (2004) Chemical mechanical polishing of tantalum: oxidizer and pH effects. J Mater Sci: Mater Electron 15(2):87–90. https://doi.org/10.1023/B:JMSE.0000005381.96813.0f

    Article  CAS  Google Scholar 

  25. Jindal A, Babu SV (2004) Effect of pH on CMP of copper and tantalum. J Electrochem Soc 151(10):G709. https://doi.org/10.1149/1.1792871

    Article  CAS  Google Scholar 

  26. Zhang J, Li S, Carter PW (2007) Chemical mechanical polishing of tantalum: aqueous interfacial reactivity of tantalum and tantalum oxide. J Electrochem Soc 154(2):H109. https://doi.org/10.1149/1.2404899

    Article  CAS  Google Scholar 

  27. Kaufman FB, Thompson DB, Broadie RE, Jaso MA, Guthrie WL, Pearson DJ, Small MB (1991) Chemical-mechanical polishing for fabricating patterned W Metal features as chip interconnects. J Electrochem Soc 138(11):3460–3465. https://doi.org/10.1149/1.2085434

    Article  CAS  Google Scholar 

  28. Seo Y-J, Kim N-H, Lee W-S (2006) Chemical mechanical polishing and electrochemical characteristics of tungsten using mixed oxidizers with hydrogen peroxide and ferric nitrate. Mater Lett 60(9):1192–1197. https://doi.org/10.1016/j.matlet.2005.10.113

    Article  CAS  Google Scholar 

  29. Seo J, You K, Moon J, Kim JH, Paik U (2017) Communication—corrosion behavior of tungsten metal gate in the presence of hydrogen peroxide at acidic medium. ECS J Solid State Sci Technol 6(4):P169–P171. https://doi.org/10.1149/2.0311704jss

    Article  CAS  Google Scholar 

  30. Poddar MK, Jalalzai P, Sahir S, Yerriboina NP, Kim T-G, Park J-G (2021) Tungsten passivation layer (WO3) formation mechanisms during chemical mechanical planarization in the presence of oxidizers. Appl Surf Sci 537:147862. https://doi.org/10.1016/j.apsusc.2020.147862

    Article  CAS  Google Scholar 

  31. Testa F, Coetsier C, Carretier E, Ennahali M, Laborie B, Moulin P (2014) Recycling a slurry for reuse in chemical mechanical planarization of tungsten wafer: effect of chemical adjustments and comparison between static and dynamic experiments. Microelectron Eng 113:114–122. https://doi.org/10.1016/j.mee.2013.07.022

    Article  CAS  Google Scholar 

  32. Ding X (2010) Experimental research of argon-arc welding of Ta-12W alloy. J Xi’an Univ (Nat Sci Ed) 13(04):61–63 (in Chinese)

    Google Scholar 

  33. Wu H, Huang H, Jiang F, Xu X (2016) Mechanical wear of different crystallographic orientations for single abrasive diamond scratching on Ta12W. Int J Refract Met Hard Mater 54:260–269. https://doi.org/10.1016/j.ijrmhm.2015.07.038

    Article  CAS  Google Scholar 

  34. Wu Y, Jiang L, Qian L (2022) Achieving smooth PZT surface via chemical mechanical polishing with ethylenediamine dihydrochloride. Ceram Int 48(13):18891–18898. https://doi.org/10.1016/j.ceramint.2022.03.168

    Article  CAS  Google Scholar 

  35. Cui X, Zhang Z, Yu S, Chen X, Shi C, Zhou H, Meng F, Yu J, Wen W (2023) Unprecedented atomic surface of silicon induced by environmentally friendly chemical mechanical polishing. Nanoscale. https://doi.org/10.1039/D3NR01149F

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu D, Zhang Z, Feng J, Yu Z, Meng F, Shi C, Xu G, Shi S, Liu W (2022) Environment-friendly chemical mechanical polishing for copper with atomic surface confirmed by transmission electron microscopy. Colloids Surf A: Physicochem Eng Aspects. https://doi.org/10.1016/j.colsurfa.2022.130500

    Article  Google Scholar 

  37. Liao L, Zhang Z, Meng F, Liu D, Wu B, Li Y, Xie W (2021) A novel slurry for chemical mechanical polishing of single crystal diamond. Appl Surf Sci 564:150431. https://doi.org/10.1016/j.apsusc.2021.150431

    Article  CAS  Google Scholar 

  38. Wang C, Wang F, Han Y (2016) The structure, bond strength and apatite-inducing ability of micro-arc oxidized tantalum and their response to annealing. Appl Surf Sci 361:190–198. https://doi.org/10.1016/j.apsusc.2015.11.133

    Article  ADS  CAS  Google Scholar 

  39. Chang C-C, Jeng JS, Chen JS (2002) Microstructural and electrical characteristics of reactively sputtered Ta-N thin films. Thin Solid Films 413(1):46–51. https://doi.org/10.1016/S0040-6090(02)00342-5

    Article  ADS  CAS  Google Scholar 

  40. Roy A, Munagala VNV, Patel P, Sharifi N, Alidokht SA, Makowiec M, Chromik RR, Moreau C, Stoyanov P (2023) Friction and wear behavior of suspension plasma sprayed tantalum oxide coatings at elevated temperatures. Surf Coat Technol 452:129097. https://doi.org/10.1016/j.surfcoat.2022.129097

    Article  CAS  Google Scholar 

  41. Tu H, Xu L, Mou F, Guan J (2016) Highly active Ta2O5 microcubic single crystals: facet energy calculation, facile fabrication and enhanced photocatalytic activity of hydrogen production. J Mater Chem A 4(42):16562–16568. https://doi.org/10.1039/C6TA06648H

    Article  CAS  Google Scholar 

  42. Peden CHF, Shinn ND (1994) Oxidation of W(110): valence-band and W(4f) core-level spectroscopy. Surf Sci 312(1):151–156. https://doi.org/10.1016/0039-6028(94)90812-5

    Article  ADS  CAS  Google Scholar 

  43. Jaegermann W, Schmeisser D (1986) Reactivity of layer type transition metal chalcogenides towards oxidation. Surf Sci 165(1):143–160. https://doi.org/10.1016/0039-6028(86)90666-7

    Article  ADS  CAS  Google Scholar 

  44. Yu B, Li DY, Grondin A (2013) Effects of the dissolved oxygen and slurry velocity on erosion–corrosion of carbon steel in aqueous slurries with carbon dioxide and silica sand. Wear 302(1):1609–1614. https://doi.org/10.1016/j.wear.2013.01.044

    Article  CAS  Google Scholar 

  45. Tripathi S, Choi S, Doyle FM, Dornfeld DA (2009) Integrated tribo-chemical modeling of copper CMP. MRS spring meeting. eScholarship University of California, San Francisco

    Google Scholar 

  46. Choi S, Tripathi S, Dornfeld DA, Doyle FM (2010) Copper CMP modeling: millisecond scale adsorption kinetics of BTA in glycine-containing solutions at pH 4. J Electrochem Soc 157(12):H1153. https://doi.org/10.1149/1.3499217

    Article  CAS  Google Scholar 

  47. Lim J-H, Park J-H, Park J-G (2013) Effect of iron(III) nitrate concentration on tungsten chemical-mechanical-planarization performance. Appl Surf Sci 282:512–517. https://doi.org/10.1016/j.apsusc.2013.06.003

    Article  ADS  CAS  Google Scholar 

  48. Guo D, Kwok CT (2020) Effect of pH on the corrosion behavior of tungsten-copper alloys. Corros Sci 177:108994. https://doi.org/10.1016/j.corsci.2020.108994

    Article  CAS  Google Scholar 

  49. Guo B, Song S, Chacko J, Ghalambor A (2005) Chapter 15 - flow assurance. In: Guo B, Song S, Chacko J, Ghalambor A (eds) Offshore pipelines. Gulf Professional Publishing, Burlington, pp 169–214

    Chapter  Google Scholar 

  50. Bousse L, Mostarshed S, Van Der Shoot B, de Rooij NF, Gimmel P, Göpel W (1991) Zeta potential measurements of Ta2O5 and SiO2 thin films. J Colloid Interface Sci 147(1):22–32. https://doi.org/10.1016/0021-9797(91)90130-Z

    Article  ADS  CAS  Google Scholar 

  51. Ramarajan S, Li Y, Hariharaputhiran M, Her YS, Babu S (2000) Effect of pH and ionic strength on chemical mechanical polishing of tantalum. Electrochem Solid-State Lett 3(5):232–234

    Article  CAS  Google Scholar 

  52. Chiu S-Y, Wang Y-L, Liu C-P, Chang S-C, Hwang G-J, Feng M-S, Chen C-F (2006) High-selectivity damascene chemical mechanical polishing. Thin Solid Films 498(1–2):60–63. https://doi.org/10.1016/j.tsf.2005.07.063

    Article  ADS  CAS  Google Scholar 

  53. Jiang L, He Y, Liang H, Li Y, Luo J (2016) Effect of potassium ions on tantalum chemical mechanical polishing in H2O2-based alkaline slurries. ECS J Solid State Sci Technol 5(2):P100–P111. https://doi.org/10.1149/2.0281602jss

    Article  CAS  Google Scholar 

  54. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic Press, Cambridge

    Google Scholar 

  55. Stein DJ, Hetherington D, Guilinger T, Cecchi JL (1998) In situ electrochemical investigation of tungsten electrochemical behavior during chemical mechanical polishing. J Electrochem Soc 145(9):3190–3196. https://doi.org/10.1149/1.1838785

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support by the National Key R&D Program of China (2020YFA0711001), National Natural Science Foundation of China (51905505, 51975488, and 51991373).

Author information

Authors and Affiliations

Authors

Contributions

QZ: Formal analysis, Investigation, Resources, Writing—Original Draft, and Writing—Review & Editing; CT: Formal analysis, Investigation, and Writing—Original Draft; JZ: Formal analysis; PS: Funding acquisition; LJ: Conceptualization, Formal analysis, Funding acquisition, Project administration, Resources, Supervision, and Writing—Review & Editing; LQ: Funding acquisition and Resources.

Corresponding author

Correspondence to Liang Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Tian, C., Zheng, J. et al. Preparing an ultra-smooth TaW alloy surface with chemical mechanical polishing via controlling galvanic corrosion. J Appl Electrochem 54, 839–850 (2024). https://doi.org/10.1007/s10800-023-01986-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01986-w

Keywords

Navigation