Skip to main content
Log in

Electrodeposition of silicon films from organic solvents on nanoporous copper substrates

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Silicon and silicon-based materials are among the important modern materials with application in many fields of technology from electronics to energy materials. For some applications, for example the use of Si in Li-ion batteries, nanometer-sized dimensions are required. A cost-effective, environmentally sustainable, scalable, and versatile formation of functional Si films and materials is therefore of large interest. In this work, we report on the electrodeposition of amorphous silicon-based films onto planar and onto nanoporous copper substrates using different organic electrolytes. The morphology and composition of the Si-based coatings are dependent on the solvent used for electrodeposition. Acetonitrile, as a low viscosity solvent, leads to the faster formation of thicker, mostly metallic, and homogeneous electrodeposited Si films. Propylene carbonate, a higher-viscosity solvent generates thinner and more heterogeneous coatings. The Si electrodeposition presented in this work could be transferred onto other complex substrate morphologies, with potential applications in the fields of heterogeneous photocatalysis or energy storage.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shimoda T, Matsuki Y, Furusawa M et al (2006) Solution-processed silicon films and transistors. Nature 440:783–786. https://doi.org/10.1038/nature04613

    Article  PubMed  CAS  Google Scholar 

  2. Shah NK, Mukhopadyay I (2017) Electrodeposition of Silicon (Si) from ionic liquid at room temperature (for EWT solar cell). Mater Today Proc 4:12716–12721. https://doi.org/10.1016/j.matpr.2017.10.088

    Article  Google Scholar 

  3. Schropp REI (2006) Amorphous (Protocrystalline) and Microcrystalline Thin Film Silicon Solar cells Nanostructured materials for Solar Energy Conversion. Elsevier, Amstersam, pp 131–166

    Google Scholar 

  4. Shi G, Kioupakis E (2015) Electronic and optical properties of nanoporous silicon for solar-cell applications. ACS Photonics 2:208–215. https://doi.org/10.1021/ph5002999

    Article  CAS  Google Scholar 

  5. Salah M, Murphy P, Hall C et al (2019) Pure silicon thin-film anodes for lithium-ion batteries: a review. J Power Sources 414:48–67. https://doi.org/10.1016/j.jpowsour.2018.12.068

    Article  CAS  Google Scholar 

  6. Ozanam F, Rosso M (2016) Silicon as anode material for Li-ion batteries. Mater Sci Eng B Solid State Mater Adv Technol 213:2–11. https://doi.org/10.1016/j.mseb.2016.04.016

    Article  CAS  Google Scholar 

  7. Su X, Wu Q, Li J et al (2014) Silicon-based nanomaterials for Lithium-ion batteries: a review. Adv Energy Mater. https://doi.org/10.1002/aenm.201300882

    Article  Google Scholar 

  8. Teki R, Krishnan R, Parker TC et al (2009) Nanostructured silicon anodes for lithium ion rechargeable batteries. Small 5:2236–2242. https://doi.org/10.1002/smll.200900382

    Article  PubMed  CAS  Google Scholar 

  9. Li H, Huang X, Chen L et al (1999) A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem Solid-State Lett 2:547. https://doi.org/10.1149/1.1390899

    Article  CAS  Google Scholar 

  10. Kang Z, Tsang CHA, Wong NB et al (2007) Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions. J Am Chem Soc 129:12090–12091. https://doi.org/10.1021/ja075184x

    Article  PubMed  CAS  Google Scholar 

  11. Cheng KY, Anthony R, Kortshagen UR, Holmes RJ (2011) High-efficiency silicon nanocrystal light-emitting devices. Nano Lett 11:1952–1956. https://doi.org/10.1021/nl2001692

    Article  PubMed  CAS  Google Scholar 

  12. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429. https://doi.org/10.1016/j.nantod.2012.08.004

    Article  CAS  Google Scholar 

  13. Gu M, He Y, Zheng J, Wang C (2015) Nanoscale silicon as anode for Li-ion batteries: the fundamentals, promises, and challenges. Nano Energy 17:366–383. https://doi.org/10.1016/j.nanoen.2015.08.025

    Article  CAS  Google Scholar 

  14. Mattox DM (2010) Handbook of Physical Vapor Deposition (PVD) Processing, 2nd ed. William Andrew, New York

    Google Scholar 

  15. Zarchi M, Ahangarani S (2018) Study of silicon films deposited by EB-PVD and the effect of applying annealing conditions on them. Optik (Stuttg) 154:601–609. https://doi.org/10.1016/j.ijleo.2017.10.052

    Article  CAS  Google Scholar 

  16. Pierson HO (1999) Handbook of chemical vapor deposition (CVD), principles, technology, and applications, 2nd ed. William Andrew, LLC, New York

    Google Scholar 

  17. Schropp R, Stannowski B, Brockhoff A et al (2000) Hot wire CVD of heterogeneous and polycrystalline silicon semiconducting thin films for application in thin film transistors and solar cells. Mater Phys Mech 1:73–82

    CAS  Google Scholar 

  18. Agrawal AK, Austin AE (1981) Electrodeposition of silicon from solutions of silicon halides in aprotic solvents. J Electrochem Soc 128:2292. https://doi.org/10.1149/1.2127237

    Article  CAS  Google Scholar 

  19. Epur R, Ramanathan M, Beck FR et al (2012) Electrodeposition of amorphous silicon anode for lithium ion batteries. Mater Sci Eng B 177:1157–1162. https://doi.org/10.1016/j.mseb.2012.04.027

    Article  CAS  Google Scholar 

  20. El-Zoka AA, Langelier B, Korinek A et al (2018) Nanoscale mechanism of the stabilization of nanoporous gold by alloyed platinum. Nanoscale 10:4904–4912. https://doi.org/10.1039/c7nr08206a

    Article  PubMed  CAS  Google Scholar 

  21. Zegenhagen J, Renner FU, Reitzle A et al (2004) In situ X-ray analysis of solid/electrolyte interfaces: Electrodeposition of Cu and Co on Si(111):H and GaAs(001) and corrosion of Cu3Au(111). Surf Sci 573:67–79. https://doi.org/10.1016/j.susc.2004.05.145

    Article  CAS  Google Scholar 

  22. Reitzle A, Renner FU, Lee TL et al (2005) Electrochemical growth of copper on well-defined n-Si(1 1 1):H surfaces. Surf Sci 576:19–28. https://doi.org/10.1016/j.susc.2004.11.038

    Article  CAS  Google Scholar 

  23. Krishnamurthy AK, Rasmussen DH, Suni II (2011) Aqueous, room temperature electrochemical deposition of compact Si films. Electrochem Solid-State Lett 14:D99. https://doi.org/10.1149/1.3605307

    Article  CAS  Google Scholar 

  24. Juzeliūnas E, Fray DJ (2020) Silicon electrochemistry in molten salts. Chem Rev 120:1690–1709. https://doi.org/10.1021/acs.chemrev.9b00428

    Article  CAS  Google Scholar 

  25. Haarberg GM, Famiyeh, Lord, Martinez AM, Osen KS (2013) Electrodeposition of silicon from fluoride melts. Electrochim Acta 100:226–228. https://doi.org/10.1016/j.electacta.2012.11.052

    Article  CAS  Google Scholar 

  26. Homma T, Matsuo N, Yang X et al (2015) High purity silicon materials prepared through wet-chemical and electrochemical approaches. Electrochim Acta 179:512–518. https://doi.org/10.1016/j.electacta.2015.03.148

    Article  CAS  Google Scholar 

  27. Islam MM, Abdellaoui I, Moslah C et al (2018) Electrodeposition and characterization of silicon films obtained through electrochemical reduction of SiO2 nanoparticles. Thin Solid Films 654:1–10. https://doi.org/10.1016/j.tsf.2018.03.072

    Article  CAS  Google Scholar 

  28. Komadina J, Akiyoshi T, Ishibashi Y et al (2013) Electrochemical quartz crystal microbalance study of Si electrodeposition in ionic liquid. Electrochim Acta 100:236–241. https://doi.org/10.1016/j.electacta.2012.07.043

    Article  CAS  Google Scholar 

  29. Park J, Lee CK, Kwon K, Kim H (2013) Electrodeposition of silicon from 1-butyl-3-methyl-pyridinium bis(trifluromethylsulfonyl) imide ionic liquid. Int J Electrochem Sci 8:4206–4214

    Article  CAS  Google Scholar 

  30. Pulletikurthi G, Lahiri A, Carstens T et al (2013) Electrodeposition of silicon from three different ionic liquids: possible influence of the anion on the deposition process. J Solid State Electrochem 17:2823–2832. https://doi.org/10.1007/s10008-013-2185-1

    Article  CAS  Google Scholar 

  31. Tsuyuki Y, Takai H, Fukunaka Y, Homma T (2018) Formation of Si thin films by electrodeposition in ionic liquids for solar cell applications. Jpn J Appl Phys. https://doi.org/10.7567/JJAP.57.08RB11

    Article  Google Scholar 

  32. Gervasio DF, Palusinski O (2013) Silicon Electroplating for low cost solar cells and thin Film Transistors. In: Korkin A, Lockwood DJ (eds) Nanoscale Applications for Information and Energy Systems. Springer, New York, pp 149–168

    Chapter  Google Scholar 

  33. Gobet J (1988) Electrodeposition of silicon from a nonaqueous solvent. J Electrochem Soc 135:109. https://doi.org/10.1149/1.2095532

    Article  CAS  Google Scholar 

  34. Ma QP, Liu W, Wang BC, Meng Q, Sen (2009) Electrodeposition of silicon in organic solvent containing silicon chloride. Adv Mat Res 79–82:1635–1638. https://doi.org/10.4028/www.scientific.net/AMR.79-82.1635

    Article  CAS  Google Scholar 

  35. Munisamy T, Bard AJ (2010) Electrodeposition of Si from organic solvents and studies related to initial stages of Si growth. Electrochim Acta 55:3797–3803. https://doi.org/10.1016/j.electacta.2010.01.097

    Article  CAS  Google Scholar 

  36. Bechelany M, Elias J, Brodard P et al (2012) Electrodeposition of amorphous silicon in non-oxygenated organic solvent. Thin Solid Films 520:1895–1901. https://doi.org/10.1016/j.tsf.2011.09.026

    Article  CAS  Google Scholar 

  37. Gu J, Fahrenkrug E, Maldonado S (2013) Direct electrodeposition of crystalline silicon at low temperatures. J Am Chem Soc 135:1684–1687. https://doi.org/10.1021/ja310897r

    Article  PubMed  CAS  Google Scholar 

  38. Suk J, Kim DY, Kim DW, Kang Y (2014) Electrodeposited 3D porous silicon/copper films with excellent stability and high rate performance for lithium-ion batteries. J Mater Chem A Mater 2:2478–2481. https://doi.org/10.1039/c3ta14645f

    Article  CAS  Google Scholar 

  39. Gattu B, Epur R, Shanti PM, Jampani PH (2017) Pulsed current electrodeposition of silicon thin films anodes for lithium ion battery applications. Inorganics (Basel). https://doi.org/10.3390/inorganics5020027

    Article  Google Scholar 

  40. Dogan F, Sanjeewa LD, Hwu SJ, Vaughey JT (2016) Electrodeposited copper foams as substrates for thin film silicon electrodes. Solid State Ion 288:204–206. https://doi.org/10.1016/j.ssi.2016.02.001

    Article  CAS  Google Scholar 

  41. Nishimura Y, Fukunaka Y (2007) Electrochemical reduction of silicon chloride in a non-aqueous solvent. Electrochim Acta 53:111–116. https://doi.org/10.1016/j.electacta.2007.06.026

    Article  CAS  Google Scholar 

  42. Campbell SA, Bowes C, Mcmilhn RS (1990) The electrochemical behaviour of tetrahydrofuran and propylene carbonate without added electrolyte. J Electroanal Chem Interfacial Electrochem 284:195–204

    Article  CAS  Google Scholar 

  43. Haynes WM, Lide DR, Bruno TJ (2016) CRC Handbook of chemistry and physics: a ready-reference book of chemical and physical data, 97th edn. CRC Press, Boca Raton

    Book  Google Scholar 

  44. Armarego WLF, Perrin DD (eds) (1997) Purification of laboratory chemicals, 4th edn. Butterworth, Heinemann

    Google Scholar 

  45. Vivegnis S, Krid M, Delhalle J et al (2019) Use of pyrophosphate and boric acid additives in the copper-zinc alloy electrodeposition and chemical dealloying. J Electroanal Chem 848:113310. https://doi.org/10.1016/j.jelechem.2019.113310

    Article  CAS  Google Scholar 

  46. Herlem G, Tran-Van P, Marque P et al (2002) New handy relationship between the conductivity of concentrated nonaqueous electrolyte solutions and the dielectric constant and viscosity of the solvents. J Power Sources 107:80–89. https://doi.org/10.1016/S0378-7753(01)00996-X

    Article  CAS  Google Scholar 

  47. De Medina CL, Marchiano AM, Arvía SL AJ (1978) The potentiodynamic behaviour of copper in NaOH solutions. J Appl Electrochem 8:121–134. https://doi.org/10.1007/BF00617670

    Article  Google Scholar 

  48. Droog JMM, Alderliesten CA, Alderliesten PT, Bootsma GA (1980) Initial stages of anodic oxidation of polycrystalline copper electrodes in alkaline solution. J Electroanal Chem Interfacial Electrochem 111:61–70. https://doi.org/10.1016/S0022-0728(80)80075-1

    Article  CAS  Google Scholar 

  49. Fredj N, Burleigh TD (2011) Transpassive dissolution of copper and rapid formation of brilliant colored copper oxide films. J Electrochem Soc 158:C104. https://doi.org/10.1149/1.3551525

    Article  CAS  Google Scholar 

  50. Wang J, Huang W, Kim YS et al (2020) Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Res 13:1558–1563. https://doi.org/10.1007/s12274-020-2770-4

    Article  CAS  Google Scholar 

  51. Zhang A, Fang Z, Tang Y et al (2019) Inorganic gel-derived metallic frameworks enabling high-performance silicon anodes. Nano Lett. https://doi.org/10.1021/acs.nanolett.9b02429

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang T, Zhu J, Chen Y et al (2017) Large-scale production of silicon nanoparticles@graphene embedded in nanotubes as ultra-robust battery anodes. J Mater Chem A Mater 5:4809–4817. https://doi.org/10.1039/c6ta10631e

    Article  CAS  Google Scholar 

  53. Eränen S, Törmä P, Gonzalez P et al (2015) Thin Films on Silicon. In: Markku T (ed) Handbook of Silicon based MEMS materials and Technologies, 2nd edn. Elsevier, Amsterdam, pp 124–205

    Google Scholar 

  54. An GH, Kim H, Ahn HJ (2018) Improved ionic diffusion through the mesoporous carbon skin on silicon nanoparticles embedded in carbon for ultrafast lithium storage. ACS Appl Mater Interfac 10:6235–6244. https://doi.org/10.1021/acsami.7b15950

    Article  CAS  Google Scholar 

  55. Lin D, Suslov S, Ye C et al (2012) Laser assisted embedding of nanoparticles into metallic materials. Appl Surf Sci 258:2289–2296. https://doi.org/10.1016/j.apsusc.2011.09.132

    Article  CAS  Google Scholar 

  56. Contarini S, Howlett SP, Rizzo C, De Angelis BA (1991) XPS study on the dispersion of carbon additives in silicon carbide powders. Appl Surf Sci 51:177–183. https://doi.org/10.1016/0169-4332(91)90400-E

    Article  CAS  Google Scholar 

  57. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. In: Chastain J (ed) A reference book of standard spectra for identification and interpretation of XPS data. Surface and Interface Analysis. Perkin-Elmer Corporation, Minnesota

    Google Scholar 

  58. Khung YL, Ngalim SH, Scaccabarozzi A, Narducci D (2015) Formation of stable Si–O–C submonolayers on hydrogenterminated silicon(111) under low-temperature conditions. Beilstein J Nanotechnol 6:19–26. https://doi.org/10.3762/bjnano.6.3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Jensen DS, Kanyal SS, Madaan N et al (2013) Silicon (100)/SiO2 by XPS. Surf Sci Spectra 20:36–42. https://doi.org/10.1116/11.20121101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SV and L-CB performed the experiments. All the authors analyzed the data, wrote and reviewed the manuscript.

Corresponding authors

Correspondence to Z. Mekhalif or F. U. Renner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1280.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivegnis, S., Baudhuin, LC., Delhalle, J. et al. Electrodeposition of silicon films from organic solvents on nanoporous copper substrates. J Appl Electrochem 54, 77–88 (2024). https://doi.org/10.1007/s10800-023-01940-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01940-w

Keywords

Navigation