Skip to main content
Log in

Highly Efficient Synthesis of Silicon Nanowires from Molten Salt Electrolysis Cell with a Ceramic Diaphragm

  • Topical Collection: Carbon-Based Materials for Energy Storage
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Silicon (Si) nanowire as a kind of one-dimensional semiconductor material is widely used in solar cells, biosensors, nanoelectronic devices, and lithium-ion batteries, among other applications. Traditional preparation methods for Si nanowires require high-purity substrates and metal catalysts. Herein, we report an efficient method of synthesizing Si nanowires by electrochemical reduction of CaSiO3 in CaCl2 molten salt. An electrolytic cell with a ceramic diaphragm is designed to separate the cathode and anode, which effectively avoids the migration and enrichment of oxygen and impurity ions. The ceramic diaphragm slows the diffusion of O2− ions and is favorable to the formation of Si nanowires. Electron microscopy and XRD analysis reveal that the electrolytic products are mainly Si nanowires with a uniform size of 20–60 nm. The as-synthesized Si nanowires evaluated as an anode material for lithium-ion batteries deliver a reversible capacity of 886 mA h g–1 after 150 cycles at 0.2 A g–1.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Cheng, L. Yu, D. Kong, Z. Yu, H. Wang, Z. Ma, Y. Wang, J. Wang, L. Pan, and Y. Shi, IEEE Electron Dev. Lett. 39, 1069 (2018).

    Article  CAS  Google Scholar 

  2. M. Schwartz, N. Thanh Chien, V. Xuan Thang, P. Wagner, R. Thoelen, and S. Ingebrandt, Phys. Status Solidi A Appl. Mat. 215, 1700740 (2018).

    Article  Google Scholar 

  3. B.C. Zhang, H. Wang, L. He, C.J. Zheng, J.S. Jie, Y. Lifshitz, S.T. Lee, and X.H. Zhang, Nano Lett. 17, 7323 (2017).

    Article  CAS  Google Scholar 

  4. P. Krogstrup, H.I. Jorgensen, M. Heiss, O. Demichel, J.V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta I Morral, Nat. Photonics 7, 306 (2013).

    Article  CAS  Google Scholar 

  5. G. Otnes, and M.T. Borgstrom, Nano Today 12, 31 (2017).

    Article  CAS  Google Scholar 

  6. P. Yu, J. Wu, S. Liu, J. Xiong, C. Jagadish, and Z.M. Wang, Nano Today 11, 704 (2016).

    Article  CAS  Google Scholar 

  7. D. Kim, C. Park, W. Choi, S.H. Shin, B. Jin, R.H. Baek, and J.S. Lee, IEEE Sens. J. 20, 2270 (2020).

    Article  CAS  Google Scholar 

  8. L.H. Zeng, S.H. Lin, Z.H. Lou, H.Y. Yuan, H. Long, Y.Y. Li, W. Lu, S.P. Lau, D. Wu, and Y.H. Tsang, NPG Asia Mater. 10, 352 (2018).

    Article  CAS  Google Scholar 

  9. H. Liu, M. Li, R.B. Kaner, S. Chen, and Q. Pei, ACS Appl. Mater. Interfaces 10, 15609 (2018).

    Article  CAS  Google Scholar 

  10. J. Liu, P. Kopold, P.A. van Aken, J. Maier, and Y. Yu, Angew. Chem. Int. Edit. 54, 9632 (2015).

    Article  CAS  Google Scholar 

  11. R.V. Salvatierra, A.-R.O. Raji, S.-K. Lee, Y. Ji, L. Li, and J.M. Tour, Adv. Energy Mater. 6, 1600918 (2016).

    Article  Google Scholar 

  12. R.G. Treuting, and S.M. Arnold, Acta Metall. 5, 1 (1957).

    Article  Google Scholar 

  13. R.S. Wagner, and W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  CAS  Google Scholar 

  14. D. Brodoceanu, H.Z. Alhmoud, R. Elnathan, B. Delalat, N.H. Voelcker, and T. Kraus, Nanotechnology 27, 8 (2016).

    Article  Google Scholar 

  15. M. Casiello, R.A. Picca, C. Fusco, L. D’Accolti, A.A. Leonardi, M.J. Lo Faro, A. Irrera, S. Trusso, P. Cotugno, M.C. Sportelli, N. Cioffi, and A. Nacci, Nanomaterials 8, 78 (2018).

    Article  Google Scholar 

  16. D.Y. Teng, L. Wu, W.W. He, and C.H. Ye, Langmuir 30, 2259 (2014).

    Article  CAS  Google Scholar 

  17. Z. Zhang, X.H. Fan, L. Xu, C.S. Lee, and S.T. Lee, Chem. Phys. Lett. 337, 18 (2001).

    Article  CAS  Google Scholar 

  18. P. Kumar, J. Nanopart. Res. 12, 2473 (2010).

    Article  CAS  Google Scholar 

  19. S. Fang, H. Wang, J.Y. Yang, S.G. Lu, B. Yu, J.T. Wang, and C.R. Zhao, Mater. Lett. 160, 1 (2015).

    Article  CAS  Google Scholar 

  20. Y. Nishimura, T. Nohira, K. Kobayashi, and R. Hagiwara, J. Electrochem. Soc. 158, E55 (2011).

    Article  CAS  Google Scholar 

  21. Z.L. Yu, N. Wang, S. Fang, X.P. Qi, Z.F. Gao, J.Y. Yang, and S.G. Lu, Ind. Eng. Chem. Res. 59, 1 (2020).

    Article  CAS  Google Scholar 

  22. H.Y. Yin, W. Xiao, X.H. Mao, W.F. Wei, H. Zhu, and D.H. Wang, Electrochim. Acta 102, 369 (2013).

    Article  CAS  Google Scholar 

  23. W. Xiao, and D.H. Wang, Chem. Soc. Rev. 43, 3215 (2014).

    Article  CAS  Google Scholar 

  24. S.K. Cho, F.-R.F. Fan, and A.J. Bard, Angew. Chem.-Int. Edit. 51, 12740 (2012).

    Article  CAS  Google Scholar 

  25. S.K. Cho, F.-R.F. Fan, and A.J. Bard, Electrochim. Acta 65, 57 (2012).

    Article  CAS  Google Scholar 

  26. J. Zhao, J. Li, P. Ying, W. Zhang, L. Meng, and C. Li, Chem. Commun. 49, 4477 (2013).

    Article  CAS  Google Scholar 

  27. X. Yang, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma, Metall. Mater. Trans. B Proc. Metall. Mater. 47, 788 (2016).

    Article  Google Scholar 

  28. Y.F. Dong, T. Slade, M.J. Stolt, L.S. Li, S.N. Girard, L.Q. Mai, and S. Jin, Angew. Chem.-Int. Edit. 56, 14453 (2017).

    Article  CAS  Google Scholar 

  29. W. Xiao, X. Wang, H. Yin, H. Zhu, X. Mao, and D. Wang, RSC Adv. 2, 7588 (2012).

    Article  CAS  Google Scholar 

  30. Y.F. Yuan, L.W. Ye, D. Zhang, F. Chen, M. Zhu, L.N. Wang, S.M. Yin, and G.S. Cai, Electrochim. Acta 289, 299 (2019).

    Google Scholar 

  31. Y.F. Yuan, F. Chen, S.M. Yin, L.N. Wang, M. Zhu, J.L. Yang, Y.C. Wu, and S.Y. Guo, J. Power Sources. 38, 420 (2019).

    Google Scholar 

  32. C.K. Chan, H. Peng, G.L.K. Mcilwrath, X.F. Zhang, R.A. Huggins, and Y. Cui, Nat. Nanotechnol. 3, 31 (2008).

    Article  CAS  Google Scholar 

  33. Y.Q. Zhang, X.H. Xia, X.L. Wang, Y.J. Mai, S.J. Shi, Y.Y. Tang, C.G. Gu, and J.P. Tu, J. Power Sources. 213, 106 (2012).

    Article  CAS  Google Scholar 

  34. Y.Q. Zhang, X.H. Xia, X.L. Wang, Y.J. Mai, S.J. Shi, Y.Y. Tang, L. Li, and J.P. Tu, Electrochem. Commun. 23, 17 (2012).

    Article  CAS  Google Scholar 

  35. H. Wang, J. Fu, C. Wang, J. Wang, A. Yang, C. Li, Q. Sun, Y. Cui, and H. Li, Energy Environ. Sci. 13, 848 (2020).

    Article  CAS  Google Scholar 

  36. Y.I. Komolikov, and I.D. Kashcheev, Refract. Ind. Ceram. 53, 404 (2013).

    Article  CAS  Google Scholar 

  37. J.M. Zhang, F. Ma, K.W. Xu, and X.T. Xin, Surf. Interface Anal. 35, 805 (2003).

    Article  CAS  Google Scholar 

  38. Y.H. Zeng, X.B. Chen, Q. Cheng, J.H. Zhao, W.J. Song, and N. Dai, Appl. Surf. Sci. 265, 286 (2013).

    Article  CAS  Google Scholar 

  39. K. Hirama, Y. Taniyasu, and M. Kasu, J. Appl. Phys. 108, 013528 (2010).

    Article  Google Scholar 

  40. J. Zhang, S. Fang, X.P. Qi, Z.L. Yu, Z.H. Wu, J.Y. Yang, and S.G. Lu, J. Energy Chem. 40, 171 (2020).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Natural Science Foundation of Zhejiang Province (Grant No. LY18B030008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, Y., Yu, Z., Chen, B. et al. Highly Efficient Synthesis of Silicon Nanowires from Molten Salt Electrolysis Cell with a Ceramic Diaphragm. J. Electron. Mater. 50, 5021–5028 (2021). https://doi.org/10.1007/s11664-021-08941-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08941-5

Keywords

Navigation