Skip to main content
Log in

Electrodeposition of silicon from three different ionic liquids: possible influence of the anion on the deposition process

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrodeposition of silicon was investigated from three different ionic liquids with the cation 1-butyl-1-methylpyrrolidinium ([Py1,4]+) and three different anions, namely, trifluoromethylsulfonate (TfO), bis(trifluoromethylsulfonyl)amide (TFSA) and tris(pentafluoroethyl)-trifluorophosphate (FAP) at room temperature and at 100 °C, respectively. The electrodeposition was performed on gold and on copper substrates. Cyclic voltammetry was used to evaluate the possible influence of anions on the deposition process. In situ STM studies were also carried out to examine the interfacial behaviour of the SiCl4/[Py1,4]TFSA and SiCl4/[Py1,4]FAP on Au(111) at room temperature. In situ STM measurements revealed that an underpotential deposition of Si in [Py1,4]FAP occurred on Au (111) at ~ -0.5 V (vs. Fc/Fc+). In comparison, only adsorption of ionic liquid and gold surface reconstruction was found to occur in the potential regime between -0.3 and −1.8 V (vs. Fc/Fc+), respectively, in the case of [Py1,4]TFSA. In situ STM investigations reveal an effect of the anion on the interfacial processes. In situ I/U tunnelling spectroscopy shows that the band gap of the electrodeposits is ~1.1 eV, indicating that semiconducting silicon has been electrodeposited. Potentiostatic electrolysis was performed to deposit Si from the employed electrolytes at room temperature and at 100 °C. The deposits were characterised using scanning electron microscopy and X-ray diffraction. Thin films of Si could be obtained from the employed ionic liquids and the quality of the deposits was significantly improved at 100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hochbaum AI, Yang P (2010) Chem Rev 110:527–546

    Article  CAS  Google Scholar 

  2. Mastronardi ML, Henderson EJ, Puzzo DP, Ozin GA (2012) Adv Mater 24:5890–5898

    Article  CAS  Google Scholar 

  3. Pavesi L (2005) Mater Today 8:18–25

    Article  CAS  Google Scholar 

  4. Scrosati B, Garche J (2010) J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  5. Etacheri V, Geiger U, Gofer Y, Roberts GA, Stefan IC, Fasching R, Aurbach D (2012) Langmuir 28:6175–6184

    Article  CAS  Google Scholar 

  6. Cohen U (1977) J Electron Mater 6:607–643

    Article  CAS  Google Scholar 

  7. Cohen U, Huggins RA (1976) J Electrochem Soc 123:381–383

    Article  CAS  Google Scholar 

  8. Rao GM, Elwell D, Feigelson RS (1980) J Electrochem Soc 127:1940–1944

    Article  CAS  Google Scholar 

  9. Boen R, Bouteillon J (1983) J Appl Electrochem 13:277–288

    Article  CAS  Google Scholar 

  10. Stern KH, McCollum ME (1985) Thin Solid Films 124:129–134

    Article  CAS  Google Scholar 

  11. Frazer EJ, Welch BJ (1977) Electrochim Acta 22:1179–1182

    Article  CAS  Google Scholar 

  12. Munisamy T, Bard AJ (2010) Electrochim Acta 55:3797–3803

    Article  CAS  Google Scholar 

  13. Bechelany M, Elias J, Brodard P, Michler J, Philippe L (2012) Thin Solid Films 520:1895–1901

    Article  CAS  Google Scholar 

  14. Qiu-ping MA, Wen L, Bao-cheng W, Qing-sen M (2009) Adv Mater Res 79–82:1635–1638

    Google Scholar 

  15. Katayama Y, Yokomizo M, Miura T, Kishi T (2001) Electrochemistry 69:834–836

    CAS  Google Scholar 

  16. Zein El Abedin S, Borissenko N, Endres F (2004) Electrochem Commun 6:510–514

    Article  CAS  Google Scholar 

  17. Borisenko N, Zein El Abedin S, Endres F (2006) J Phys Chem B 110:6250–6256

    Article  CAS  Google Scholar 

  18. Al-Salman R, Zein El Abedin S, Endres F (2008) Phys Chem Chem Phys 31:4650–4657

    Article  Google Scholar 

  19. Bebensee F, Borissenko N, Frerichs M, Höfft O, Maus-Friedrichs W, Zein El Abedin S, Endres F (2008) Z Phys Chem 222:671–686

    Article  CAS  Google Scholar 

  20. Al-Salman R, Mallet J, Molinari M, Fricoteaux P, Martineau F, Troyon M, Zein El Abedin S, Endres F (2008) Phys Chem Chem Phys 10:6233–6237

    Article  CAS  Google Scholar 

  21. Mallet J, Molinari M, Martineau F, Delavoie F, Fricoteaux P, Troyon M (2008) Nano Lett 8:3468–3474

    Article  CAS  Google Scholar 

  22. Liu X, Zhang Y, Ge Y, Zhao J, Li Y, Endres F (2012) Phys Chem Chem Phys 14:5100–5105

    Article  CAS  Google Scholar 

  23. Komadina J, Akiyoshia T, Ishibashia Y, Fukunaka Y, Homma T (2013) Electrochim Acta 100:236–241

    Article  CAS  Google Scholar 

  24. Endres F, Hofft O, Borisenko N, Gasparotto LH, Prowald A, Al-Salman R, Carstens T, Atkin R, Bund A, Zein El Abedin S (2010) Phys Chem Chem Phys 12:1724–1732

    Article  CAS  Google Scholar 

  25. Atkin R, Borisenko N, Drüschler M, Zein El Abedin S, Endres F, Hayes R, Huber B, Roling B (2011) Phys Chem Chem Phys 13:6849–9857

    Article  CAS  Google Scholar 

  26. Borisenko N, Zein El Abedin S, Endres F (2012) Chem Phys Chem 13:1736–1742

    Article  CAS  Google Scholar 

  27. Howlett PC, Izgorodina EI, Forsyth M, MacFarlane DR (2006) Z Phys Chem 220:1483–1498

    Article  CAS  Google Scholar 

  28. Nishimura Y, Fukunaka Y, Miranda CR, Nisheda T, Nohira T, Hagiwara R (2009) ECS Transaction 16:1–6

    Article  CAS  Google Scholar 

  29. Lahiri A, Olschewski M, Höfft M, Zein El Abedin S, Endres F (2013) J Phys Chem C 117:1722–1727

    Article  CAS  Google Scholar 

  30. Moustafa EM, Zein El Abedin S, Skurankov A, Zschippang E, Saad AY, Bund A, Endres F (2007) J Phys Chem B 111:4693–4704

    Article  CAS  Google Scholar 

  31. Kometani TY, Wood DL, Luongo JP (1987) Anal Chem 59:1089–1093

    Article  CAS  Google Scholar 

  32. Socrates G (2001) Infrared and Raman characteristic group frequencies, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  33. Hultman L, Robertsson A, Hentzell HTG, Engström I, Psaras PA (1987) J Appl Phys 62:3647–3655

    Article  CAS  Google Scholar 

  34. Hiraki A, Nicolet MA, Mayer JW (1971) Appl Phys Lett 18:178–181

    Article  CAS  Google Scholar 

  35. Johnson DC, Mosby JS, Riha SC, Prieto AL (2010) J Mater Chem 20:1993–1998

    Article  CAS  Google Scholar 

  36. Hymes S, Kumar KS, Murarka SP, Ding PJ, Wang W, Lanford WA (1998) J Appl Phys 83:4507–4512

    Article  CAS  Google Scholar 

  37. Lee CS, Gong H, Liu R, WEE ATS, Cha CL, See A, Chan L (2001) J Appl Phys 90:3822–3824

    Article  CAS  Google Scholar 

  38. Scherrer P (1918) Göttinger Nachr 2:98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Endres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pulletikurthi, G., Lahiri, A., Carstens, T. et al. Electrodeposition of silicon from three different ionic liquids: possible influence of the anion on the deposition process. J Solid State Electrochem 17, 2823–2832 (2013). https://doi.org/10.1007/s10008-013-2185-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2185-1

Keywords

Navigation