Skip to main content
Log in

Effect of deposition potential on the microstructure and corrosion resistance of Ni–Cu alloys in ChCl-EG ionic liquids

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Using a constant potential electrodeposition technique, bright Ni-Cu alloy plating coating was made directly on a purple copper substrate from choline chloride-ethylene glycol deep eutectic solvents (1:2 mol ChCl-EG Deep Eutectic Solvents, ChCl-EG DESs). Cyclic voltammetry (CV) and chronoamperometry (CA) were used to examine the electrochemical behavior and nucleation/growth mechanism of Ni/Cu ions in ChCl-EG DESs. Kinetic potential polarization and electrochemical impedance spectroscopy (EIS) were used to examine the corrosion resistance of Ni-Cu alloy coatings before and after passivation. At 70 °C, the reduction peaks coincide, indicating that increasing temperature can bring the Ni/Cu ion's reduction potentials closer together. The Ni-Cu plating coating follows a three-dimensional continuous nucleation/growth mechanism, which leads to a "velvety" microstructure. The deposition potential had a significant effect on the microscopic morphology, composition, and corrosion resistance of Ni–Cu alloy plating coating, and a dense velvety structured plating coating with a thickness ~ 16.95 μm can be obtained at −0.85 V (vs. Ag) and exhibites a best corrosion resistance (corrosion current density icorr = 12.623 μA/cm2, charge response resistance Rt = 4.486 KΩ/cm2). The passivation film consists of CuO, Cu2O and Ni(OH)2. The passivation can further improve the corrosion resistance of the plating layer (icorr = 2.107μA/cm2, Rt = 16.91KΩ/cm2).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ismail KM, Fathi AM, Badawy WA (2004) The influence of Ni content on the stability of copper-nickel alloys in alkaline sulphate solutions. J Appl Electrochem 34:823–831. https://doi.org/10.1023/B:JACH.0000035612.66363.a3

    Article  CAS  Google Scholar 

  2. Ishikawa M, Enomoto H, Matsuoka M, Iwakura C (1995) Effect of some factors on electrodeposition of nickel-copper alloy from pyrophosphate-tetraborate bath. Electrochim Acta 40:1663–1668. https://doi.org/10.1016/0013-4686(95)00084-R

    Article  CAS  Google Scholar 

  3. Green TA, Green AE, Russel AE, Roy S (1998) The development of a stable citrate electrolyte for the electrodeposition of copper-nickel alloys. J Electrochem Soc 145:875–881. https://doi.org/10.1149/1.1838360/meta

    Article  CAS  Google Scholar 

  4. Yang C-C, Chen HY (1995) Pulsed electrodeposition of copper/nickel multilayers on a rotating-disk electrode.1. galvanostatic deposition. J Electrochem Soc 142:3034–3040. https://doi.org/10.1149/1.2048681

    Article  CAS  Google Scholar 

  5. Yeo I-H, Johnson DC (2001) Electrochemical response of small organic molecules at nickel-copper alloy electrodes. J Electroanal Chem 495:110–119. https://doi.org/10.1016/S0022-0728(00)00401-0

    Article  CAS  Google Scholar 

  6. Baskaran I, Sankara Narayanan TSN, Stephen A (2006) Pulsed electrodeposition of nanocrystalline Cu-Ni alloy films and evaluation of their characteristic properties. Mater Lett 60:1990–1995. https://doi.org/10.1016/j.matlet.2005.12.065

    Article  CAS  Google Scholar 

  7. Ghosh SK, Grover AK, Dey GK, Totlani MK (2000) Nanocrystalline Ni-Cu alloy plating by pulse electrolysis. Surf Coat Technol 126:48–63. https://doi.org/10.1016/s0257-8972(00)00520-x

    Article  CAS  Google Scholar 

  8. MiloˇsevMetikoˇs-hukovi´c IM (1999) Effect of chloride concentration range on the corrosion resistance of Cu-xNi alloys. J Appl Electrochem 29:393–402. https://doi.org/10.1023/a:1003426701670

    Article  Google Scholar 

  9. Oriˇnáková R, Turoˇnová A, Kladeková D, Gálová M, Smith RM (2006) Recent developments in the electrodeposition of nickel and some nickel-based alloys. J Appl Electrochem 36:957–972. https://doi.org/10.1007/s10800-006-9162-7

    Article  CAS  Google Scholar 

  10. Haciismailoglu M, Alper M (2011) Effect of electrolyte pH and Cu concentration on microstructure of electrodeposited Ni-Cu alloy films. Surf Coat Technol 206:1430–1438. https://doi.org/10.1016/j.surfcoat.2011.09.010

    Article  CAS  Google Scholar 

  11. Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solutions. Marcel Dekker, New York

    Google Scholar 

  12. Sun L, Chien CL, Searson PC (2004) Fabrication of nanoporous nickel by electrochemical dealloying. Chem Mater 16:3125. https://doi.org/10.1021/cm0497881

    Article  CAS  Google Scholar 

  13. Mattarozzi L, Cattarin S, Comisso N, Guerriero P, Musiani M, Vázquez Gómez L, Verlato E (2013) Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes. Electrochim Acta 89:488. https://doi.org/10.1016/j.electacta.2012.11.074

    Article  CAS  Google Scholar 

  14. Mattarozzi L, Cattarin S, Comisso N, Gambirasi A, Guerriero P, Musiani M, Verlato E (2014) Hydrogen evolution assisted electrodeposition of porous Cu-Ni alloy electrodes and their use for nitrate reduction in alkali. Electrochim Acta 140:337. https://doi.org/10.1016/j.electacta.2014.04.048

    Article  CAS  Google Scholar 

  15. Qian HX, Sun J, Li QS, Sun HJ, Fu X (2020) Electrochemical mechanism of trivalent chromium reduction in ChCl-EG deep eutectic solvents containing trivalent chromium. J Electrochem Soc 167:102511. https://doi.org/10.1149/1945-7111/ab9c8b

    Article  CAS  Google Scholar 

  16. Li QS, Qian HX, Fu X, Sun HJ, Sun J (2021) Characterization and electrochemical analysis of silver electrodeposition in ChCl-Urea deep eutectic solvents. Mater Res Bull 44:1–11. https://doi.org/10.1007/s12034-020-02276-3

    Article  CAS  Google Scholar 

  17. Sun J, Ming TY, Qian HX, Li QS (2018) Electrochemical behaviors and electrodeposition of single-phase Cu-Sn alloy coating in [BMIM]Cl. Electrochim Acta 297:87–93. https://doi.org/10.1016/j.electacta.2018.11.189

    Article  CAS  Google Scholar 

  18. Deng MJ, Lin PC, Sun IW, Chen PY, Chang JK (2009) Electrodeposition of NiCu alloy in an air and water stable room temperature ionic liquid. Electrochemistry 8:582–584. https://doi.org/10.5796/electrochemistry.77.582

    Article  Google Scholar 

  19. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 9:70–71. https://doi.org/10.1039/B210714G

    Article  Google Scholar 

  20. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatilealternatives to ionic liquids. J Am Chem Soc 126:9142–9147. https://doi.org/10.1021/ja048266j

    Article  CAS  PubMed  Google Scholar 

  21. Florea A, Anicai L, Costovici S, Golgovicic F, Visan T (2010) Ni and Ni alloy coatings electrodeposited from choline chloride-based ionic liquids-electrochemical synthesis and characterization. Surf Interface Anal 42:1271–1275. https://doi.org/10.1002/sia.3317

    Article  CAS  Google Scholar 

  22. Gu CD, Tu JP (2011) One-step fabrication of nanostructured Ni film with lotus effect from deep eutectic solvent. Langmuir 27:10132–10140. https://doi.org/10.1021/la200778a

    Article  CAS  PubMed  Google Scholar 

  23. Yang HY, Guo XW, Birbilis N, Wu GH, Ding WJ (2011) Tailoring nickel coatings via electrodeposition from a eutectic-based ionic liquid doped with nicotinic acid. Appl Surf Sci 257:9094–9102. https://doi.org/10.1016/j.apsusc.2011.05.106

    Article  CAS  Google Scholar 

  24. Gao MY, Yang C, Zhang QB, Yu YW, Hua YX, Li Y, Dong P (2016) Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution. Electrochim Acta 215:609–616. https://doi.org/10.1016/j.electacta.2016.08.145

    Article  CAS  Google Scholar 

  25. Fu X, Sun HJ, Zhan CB, Zhang RJ, Wang BJ, Sun J (2022) Study on electrodeposition behaviour and corrosion resistance of nickel-copper alloy in ChCl-EG deep eutectic solvents. Bull Mater Sci 45:209. https://doi.org/10.1007/s12034-022-02789-z

    Article  CAS  Google Scholar 

  26. Zhou XZ, Deng CP, Su YC (2010) Comparative study on the electrochemical performance of the Cu-30Ni and Cu-20Zn-10Ni alloys. J Alloys Compd 491:92–97. https://doi.org/10.1016/j.jallcom.2009.11.002

    Article  CAS  Google Scholar 

  27. Badawy WA, Ismail KM, Fathi AM (2005) Effect of Ni content on the corrosion behavior of Cu-Ni alloys in neutral chloride solution. Electrochim Acta 50:3603–3608. https://doi.org/10.1016/j.electacta.2004.12.030

    Article  CAS  Google Scholar 

  28. Castle JE (2010) Developments in expert systems for automatic examination of samples by X-ray photoelectron spectroscopy. J Electron Spec 347:178–179. https://doi.org/10.1016/j.elspec.2009.07.005

    Article  CAS  Google Scholar 

  29. Castle JE, Salvi AM (2001) Chemical state information from the near-peak region of the X-ray photoelectron background. J Electron Spec 1103:114–116. https://doi.org/10.1016/S0368-2048(00)00305-4

    Article  Google Scholar 

  30. Yue D, Jia Y, Ying Y et al (2012) Structure and electrochemical behavior of ionic liquid analogue based on choline chloride and urea. Electrochim Acta 65:30–36. https://doi.org/10.1016/j.electacta.2012.01.003

    Article  CAS  Google Scholar 

  31. Sun J, Ming TY, Qian HX, Li QS (2019) Electrochemical behaviors and electrodeposition of single-phase Cu-Sn alloy coating in [BMIM]Cl. Electrochim Acta 297:87–93. https://doi.org/10.1016/j.electacta.2018.11.189

    Article  CAS  Google Scholar 

  32. Fu X, Zhan CB, Zhang RJ, Wang BJ, Sun HJ, Sun J (2022) Effect of temperature on mechanism and kinetics of electrochemical nucleation of copper in ChCl-based deep eutectic solvents. J Solid State Electrochem. https://doi.org/10.1007/s10008-022-05282-z

    Article  Google Scholar 

  33. Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355. https://doi.org/10.1021/ac60230a016

    Article  CAS  Google Scholar 

  34. MacLeod AJ (1993) A note on the Randles-Sevcik function from electrochemistry. Appl Math Comput 57:305–310. https://doi.org/10.1016/0096-3003(93)90154-7

    Article  Google Scholar 

  35. Abdi Z, Vandichel M, Sologubenko AS (2021) The importance of identifying the true catalyst when using Randles-Sevcik equation to calculate turnover frequency. Int J Hydrogen Energy 46:37774–37781. https://doi.org/10.1016/j.ijhydene.2021.09.039

    Article  CAS  Google Scholar 

  36. Sherif ESM, Almajid AA, Bairamov AK, Al-Zahrani E (2012) A comparative study on the corrosion of Monel-400 in aerated and deaerated Arabian Gulf water and 3.5% sodium chloride solutions. Int J Electrochem Sci 7:273–274. https://doi.org/10.1007/s11615-003-0058-4

    Article  Google Scholar 

  37. Solmaz R, Döner A, Kardas G (2008) Electrochemical deposition and characterization of Ni-Cu coatings as cathode materials for hydrogen evolution reaction. Electrochem Commun 10:1909–1911. https://doi.org/10.1016/j.elecom.2008.10.011

    Article  CAS  Google Scholar 

  38. Ngamlerdpokin K, Tantavichet N (2014) Electrodeposition of nickel-copper alloys to use as a cathode for hydrogen evolution in an alkaline media. Int J Hydrogen Energy 39:2505–2515. https://doi.org/10.1016/j.ijhydene.2013.12.013

    Article  CAS  Google Scholar 

  39. Wang S, Guo X, Yang H, Dai J, Zhu R, Gong J, Ding W (2014) Electrodeposition mechanism and characterization of NiCu alloy coatings from a eutectic-based ionic liquid. Appl Surf Sci 288:530–536. https://doi.org/10.1016/j.apsusc.2013.10.065

    Article  CAS  Google Scholar 

  40. Lin YP, Selman JR (1993) Electrodeposition of Ni-Zn alloy: II. electrocrystallization of Zn, Ni, and Ni-Zn alloy. J Electrochem Soc 140:1304–1311. https://doi.org/10.1149/1.2220975

    Article  CAS  Google Scholar 

  41. Allam M, Benaicha M, Dakhouche A (2018) Electrodeposition and characterization of NiMoW alloy as electrode material for hydrogen evolution in alkaline water electrolysis. Int J Hydrog Energy 43:3394–3405. https://doi.org/10.1016/j.ijhydene.2017.08.012

    Article  CAS  Google Scholar 

  42. Azpeitia LA, Gervasi CA, Bolzán AE (2017) Effects of temperature and thiourea addition on the electrodeposition of tin on glassy carbon electrodes in acid solutions. Electrochim Acta 257:388–402. https://doi.org/10.1016/j.electacta.2017.10.064

    Article  CAS  Google Scholar 

  43. Lomax DJ, Dryfe RAW (2018) Electrodeposition of Au on basal plane graphite and graphene. J Electroanal Chem 819:374–383. https://doi.org/10.1016/j.jelechem.2017.11.023

    Article  CAS  Google Scholar 

  44. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28:879–889. https://doi.org/10.1016/0013-4686(83)85163-9

    Article  CAS  Google Scholar 

  45. Zeng YM, Luo JL (2003) Electronic band structure of passive film on X70 pipeline steel. Electrochim Acta 48:3551–3562. https://doi.org/10.1016/S0013-4686(03)00477-8

    Article  CAS  Google Scholar 

  46. Meng GZ, Sun FL, Shao YW, Zhang T, Wang FH, Dong CF, Li XG (2010) Influence of nano-scale twins (NT) structure on passive film formed on nickel. Electrochim Acta 55:2575–2581. https://doi.org/10.1016/j.electacta.2009.12.027

    Article  CAS  Google Scholar 

  47. Liu H, Xu D, Yang K, Liu H, Cheng YF (2018) Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria. Corros Sci 132:46–55. https://doi.org/10.1016/j.corsci.2017.12.006

    Article  CAS  Google Scholar 

  48. Meng GZ, Li Y, Shao YW, Zhang T, Wang YQ, Wang FH, Cheng XQ, Dong CF, Li XG (2015) Effect of microstructures on corrosion behavior of nickel coatings: (I) abnormal grain size effect on corrosion behavior. J Mater Sci Technol 31:1186–1192. https://doi.org/10.1016/j.jmst.2015.10.011

    Article  CAS  Google Scholar 

  49. Girault P, Grosseau-Poussard JL, Dinhut JF, Marechal L (2001) Influence of a chromium ion implantation on the passive behaviour of nickel in artificial sea-water: an EIS and XPS study. Nucl Instrum Meth Phys Res B 174:439–452. https://doi.org/10.1016/S0168-583X(00)00686-8

    Article  CAS  Google Scholar 

  50. Ganesan M, Liu CC, Pandiyarajan S, Lee CT, Chuang HC (2022) Post-supercritical CO2 electrodeposition approach for Ni-Cu alloy fabrication: an innovative eco-friendly strategy for high-performance corrosion resistance with durability. Appl Surf Sci 577:151955. https://doi.org/10.1016/j.apsusc.2021.151955

    Article  CAS  Google Scholar 

  51. Rai PK, Shekhar S, Mondal K (2018) Development of gradient microstructure in mild steel and grain size dependence of its electrochemical response. Corros Sci 138:85–95. https://doi.org/10.1016/S0168-583X(00)00686-8

    Article  CAS  Google Scholar 

  52. Cao CN (1990) Corrosion electrochemistry. Chemical Industry Press, Beijing

    Google Scholar 

  53. Wu YH, Wang Y, Zhong QD, Zhou QY (2012) Study of the semiconductor properties of Cu-Ni alloy plated passivation films in alkaline solutions. Corrosion Sci Pro Tech 5:385–391

    Google Scholar 

  54. Chastain J, King RC Jr (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie, p 221

    Google Scholar 

Download references

Funding

This work was supported by the project of Liaoning Province Shenyang National Laboratory for Materials Science Joint Research (Project 2019JH3/30100021) and Shenyang Ligong University Innovation Team Fund Support.

Author information

Authors and Affiliations

Authors

Contributions

Chongbo Zhan: Completed the main experiment; Data analysis and related chart making; Writing draft. Runjia Zhang: Completed some experiments. Xu Fu: Completed some experiments. Haijing Sun: Paper review and suggestion for revision. Baojie Wang: Paper review and suggestion for revision. Jie Sun: Supervision, Writing-review & editing, Funding acquisition.

Corresponding author

Correspondence to Jie Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, C., Zhang, R., Fu, X. et al. Effect of deposition potential on the microstructure and corrosion resistance of Ni–Cu alloys in ChCl-EG ionic liquids. J Appl Electrochem 53, 2137–2151 (2023). https://doi.org/10.1007/s10800-023-01913-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01913-z

Keywords

Navigation