Skip to main content
Log in

Characterization and electrooxidation activity of ternary metal catalysts containing Au, Ga, and Ir for enhanced direct borohydride fuel cells

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon nanotube (CNT)-supported catalysts were synthesized by the sodium borohydride (NaBH4) reduction method and characterized by X-ray diffraction, transmission electron microscopy, inductively coupled plasma-mass spectrometry, and X-ray photoelectron spectroscopy analyses. The catalytic activities of the catalysts were examined by cyclic voltammetry, chronoamperometry, electrochemical impedance spectroscopy, and linear sweep voltammetry electrochemical analyses for direct borohydride fuel cells (DBFCs) in NaBH4 solution. The characterization analyses revealed the structure, particle size, and metal ratios of CNT-supported metals. The NaBH4 electrooxidation results indicate that the 3% AuGaIr/CNT catalyst had a specific activity of 5.65 (1529.98 mA mg−1 Au) mA cm−2 and higher catalytic activity than the other catalysts. Furthermore, the electrochemical surface area (ECSA) values were obtained by calculating the reduction peak of the metal oxide in the NaOH solution by CV analysis. The ECSA value (128.57 m2 g−1) of 3% AuGaIr/CNT catalyst was much higher than the other catalysts. The 3% AuGaIr/CNT catalyst had faster electron transfer rate with low (961.8 Ω) charge transfer resistance (Rct) and also high stability compared to the other catalysts. The study presents an up-and-coming new type of anode catalyst for DBFC applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kaya S, Caglar A, Kivrak H (2022) Carbon nanotube supported Ga@PdAgCo anode catalysts for hydrazine electrooxidation in alkaline media. Fuel 324:124822

    Article  CAS  Google Scholar 

  2. Er OF, Kivrak H (2021) Highly active carbon nanotube supported iridium, copper, ruthenium catalysts for glucose electrooxidation. Energy Storage 3:e271

    Article  CAS  Google Scholar 

  3. Navlani-Garcia M, Mori K, Nozaki A, Kuwahara Y, Yamashita H (2016) Highly efficient Ru/carbon catalysts prepared by pyrolysis of supported Ru complex towards the hydrogen production from ammonia borane. Appl Catal A General 527:45–52

    Article  CAS  Google Scholar 

  4. Chen XB, Shen SH, Guo LJ, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    Article  CAS  PubMed  Google Scholar 

  5. Yao QL, Lu ZH, Jia YS, Chen XS, Liu X (2015) In situ facile synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalysts for H-2 generation from NH3BH3 hydrolysis. Int J Hydrogen Energy 40:2207–2215

    Article  CAS  Google Scholar 

  6. Fan GY, Liu QQ, Tang DM, Li XJ, Bi J, Gao DJ (2016) Nanodiamond supported Ru nanoparticles as an effective catalyst for hydrogen evolution from hydrolysis of ammonia borane. Int J Hydrogen Energy 41:1542–1549

    Article  CAS  Google Scholar 

  7. Carrion-Satorre S, Montiel M, Escudero-Cid R, Fierro JLG, Fatas E, Ocon P (2016) Performance of carbon-supported palladium and palladium ruthenium catalysts for alkaline membrane direct ethanol fuel cells. Int J Hydrogen Energy 41:8954–8962

    Article  CAS  Google Scholar 

  8. Kaur A, Kaur G, Singh PP, Kaushal S (2021) Supported bimetallic nanoparticles as anode catalysts for direct methanol fuel cells: a review. Int J Hydrogen Energy 46:15820–15849

    Article  CAS  Google Scholar 

  9. Oliveira RCP, Vasic M, Santos DMF, Babic B, Hercigonja R, Sequeira CAC, Sljukic B (2018) Performance assessment of a direct borohydride-peroxide fuel cell with Pd-impregnated faujasite X zeolite as anode electrocatalyst. Electrochim Acta 269:517–525

    Article  CAS  Google Scholar 

  10. Ma J, Choudhury NA, Sahai Y (2010) A comprehensive review of direct borohydride fuel cells. Renew Sustain Energy Rev 14:183–199

    Article  CAS  Google Scholar 

  11. Duan DH, Liang JW, Liu HH, You X, Wei HK, Wei GQ, Liu SB (2015) The effective carbon supported core-shell structure of Ni@Au catalysts for electro-oxidation of borohydride. Int J Hydrogen Energy 40:488–500

    Article  CAS  Google Scholar 

  12. Liu J, Wang H, Wu C, Zhao QL, Wang XY, Yi LH (2014) Preparation and characterization of nanoporous carbon-supported platinum as anode electrocatalyst for direct borohydride fuel cell. Int J Hydrogen Energy 39:6729–6736

    Article  CAS  Google Scholar 

  13. Lima FHB, Pasqualeti AM, Concha MBM, Chatenet M, Ticianelli EA (2012) Borohydride electrooxidation on Au and Pt electrodes. Electrochim Acta 84:202–212

    Article  CAS  Google Scholar 

  14. Amendola SC, Onnerud P, Kelly MT, Petillo PJ, Sharp-Goldman SL, Binder M (1999) A novel high power density borohydride-air cell. J Power Sources 84:130–133

    Article  CAS  Google Scholar 

  15. Feng RX, Dong H, Wang YD, Ai XP, Cao YL, Yang HX (2005) A simple and high efficient direct borohydride fuel cell with MnO2-catalyzed cathode. Electrochem Commun 7:449–452

    Article  CAS  Google Scholar 

  16. Zolfaghari M, Arab A, Asghari A (2019) Surfactant-assisted electrodeposition of nickel nanostructures and their electrocatalytic activities toward oxidation of sodium borohydride, ethanol, and methanol. ChemistrySelect 4:4487–4495

    Article  CAS  Google Scholar 

  17. Zhang DM, Wang GL, Yuan Y, Li YG, Jiang SP, Wang YK, Ye K, Cao DX, Yan P, Cheng K (2016) Three-dimensional functionalized graphene networks modified Ni foam based gold electrode for sodium borohydride electrooxidation. Int J Hydrogen Energy 41:11593–11598

    Article  CAS  Google Scholar 

  18. Hosseini MG, Abdolmaleki M (2013) Synthesis and characterization of porous nanostructured Ni/PdNi electrode towards electrooxidation of borohydride. Int J Hydrogen Energy 38:5449–5456

    Article  CAS  Google Scholar 

  19. Merino-Jimenez I, de Leon CP, Shah AA, Walsh FC (2012) Developments in direct borohydride fuel cells and remaining challenges. J Power Sources 219:339–357

    Article  CAS  Google Scholar 

  20. Santos DMF, Sljukic B, Amaral L, Milikic J, Sequeira CAC, Maccio D, Saccone A (2016) Nickel-rare earth electrodes for sodium borohydride electrooxidation. Electrochim Acta 190:1050–1056

    Article  CAS  Google Scholar 

  21. Liang X, Liu S, Dong F, Tang Z (2022) Constructing CNT@ NiCo texture anchoring Pt nanoparticle catalyst for highly efficient methanol electrocatalytic oxidation. ChemistrySelect 7:e202200373

    Article  CAS  Google Scholar 

  22. You HJ, Chen Z, Yu Q, Zhu W, Chen BY, Lv Z, Hu Q, Liu YY, Zheng ZY, Li ST, Yeasmin F (2021) Preparation of a three-dimensional porous PbO2-CNTs composite electrode and study of the degradation behavior of p-nitrophenol. Separat Purific Technol 276:119406

    Article  CAS  Google Scholar 

  23. Cheng Y, Xu CW, Shen PK, Jiang SP (2014) Effect of nitrogen-containing functionalization on the electrocatalytic activity of PtRu nanoparticles supported on carbon nanotubes for direct methanol fuel cells. Appl Catal B Environ 158:140–149

    Article  Google Scholar 

  24. Hadavifar M, Bahramifar N, Younesi H, Li Q (2014) Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chem Eng J 237:217–228

    Article  CAS  Google Scholar 

  25. Wang JS, Xi JY, Zhang L, Zhang JJ, Guo X, Zhao JH, Song CY, Wang LC (2013) Synthesis of highly active SnO2-CNTs supported Pt-on-Au composite catalysts through site-selective electrodeposition for HCOOH electrooxidation. Electrochim Acta 112:480–485

    Article  CAS  Google Scholar 

  26. Hansu TA, Caglar A, Sahin O, Kivrak H (2020) Hydrolysis and electrooxidation of sodium borohydride on novel CNT supported CoBi fuel cell catalyst. Mater Chem Phys 239:122031

    Article  CAS  Google Scholar 

  27. Ulas B, Alpaslan D, Yilmaz Y, Dudu TE, Er OF, Kivrak H (2021) Disentangling the enhanced catalytic activity on Ga modified Ru surfaces for sodium borohydride electrooxidation. Surf Interfaces 23:100999

    Article  CAS  Google Scholar 

  28. Zhang DM, Ye K, Cheng K, Cao DX, Yin JL, Xu Y, Wang GL (2014) High electrocatalytic activity of cobalt-multiwalled carbon nanotubes-cosmetic cotton nanostructures for sodium borohydride electrooxidation. Int J Hydrogen Energy 39:9651–9657

    Article  CAS  Google Scholar 

  29. Wei JL, Wang XY, Wang Y, Chen QQ, Pei F, Wang YS (2009) Investigation of carbon-supported Au hollow nanospheres as electrocatalyst for electrooxidation of sodium borohydride. Int J Hydrogen Energy 34:3360–3366

    Article  CAS  Google Scholar 

  30. Atwan MH, Macdonald CLB, Northwood DO, Gyenge EL (2006) Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: electrocatalysis and fuel cell performance. J Power Sources 158:36–44

    Article  CAS  Google Scholar 

  31. He P, Wang X, Fu P, Wang H, Yi L (2011) The studies of performance of the Au electrode modified by Zn as the anode electrocatalyst of direct borohydride fuel cell. Int J Hydrogen Energy 36:8857–8863

    Article  CAS  Google Scholar 

  32. Zhiani M, Mohammadi I (2016) Performance study of passive and active direct borohydride fuel cell employing a commercial Pd decorated Ni–Co/C anode catalyst. Fuel 166:517–525

    Article  CAS  Google Scholar 

  33. Caglar A, Kivrak H (2021) Superior formic acid electrooxidation activity on carbon nanotube-supported binary Pd nanocatalysts prepared via sequential sodium borohydride reduction technique. Surf Interface Anal 53:716–726

    Article  CAS  Google Scholar 

  34. Ngoma MM, Mathaba M, Moothi K (2021) Effect of carbon nanotubes loading and pressure on the performance of a polyethersulfone (PES)/carbon nanotubes (CNT) membrane. Sci Rep 11:1–12

    Article  Google Scholar 

  35. Geng G, Chen P, Guan B, Liu Y, Yang C, Wang N, Liu M (2017) Sheetlike gold nanostructures/graphene oxide composites via a one-pot green fabrication protocol and their interesting two-stage catalytic behaviors. RSC Adv 7:51838–51846

    Article  CAS  Google Scholar 

  36. Zheng H-B, An L, Zheng Y, Qu C, Fang Y, Liu Q, Dang D (2018) Tuning the catalytic activity of Ir@ Pt nanoparticles through controlling Ir core size on cathode performance for PEM fuel cell application. Front Chem 6:299

    Article  PubMed  PubMed Central  Google Scholar 

  37. Oh H-S, Nong HN, Reier T, Gliech M, Strasser P (2015) Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem Sci 6:3321–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sahin O, Kivrak H, Karaman M, Atbas D (2015) The effect of iridium addition to platinum on the alcohol electrooxidation activity. Am J Mater Sci Eng 3:15–20

    CAS  Google Scholar 

  39. Luisetto I, Tuti S, Battocchio C, Lo Mastro S, Sodo A (2015) Ni/CeO2–Al2O3 catalysts for the dry reforming of methane: the effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance. Appl Catal A General 500:12–22

    Article  CAS  Google Scholar 

  40. Ulas B, Caglar A, Sahin O, Kivrak H (2018) Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation. J Colloid Interface Sci 532:47–57

    Article  CAS  PubMed  Google Scholar 

  41. Wu Y, Lin Y, Xu J (2019) Synthesis of Ag–Ho, Ag–Sm, Ag–Zn, Ag–Cu, Ag–Cs, Ag–Zr, Ag–Er, Ag–Y and Ag–Co metal organic nanoparticles for UV–Vis-NIR wide-range bio-tissue imaging. Photochem Photobiol Sci 18:1081–1091

    Article  CAS  PubMed  Google Scholar 

  42. Xiao S, Xu P, Peng Q, Chen J, Huang J, Wang F, Noor N (2017) Layer-by-layer assembly of polyelectrolyte multilayer onto PET fabric for highly tunable dyeing with water soluble dyestuffs. Polymers 9:735

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sadri R, Hosseini M, Kazi SN, Bagheri S, Zubir N, Solangi KH, Zaharinie T, Badarudin A (2017) A bio-based, facile approach for the preparation of covalently functionalized carbon nanotubes aqueous suspensions and their potential as heat transfer fluids. J Colloid Interface Sci 504:115–123

    Article  CAS  PubMed  Google Scholar 

  44. Caglar A, Cogenli MS, Yurtcan AB, Kivrak H (2020) Effective carbon nanotube supported metal (M=Au, Ag Co, Mn, Ni, V, Zn) core Pd shell bimetallic anode catalysts for formic acid fuel cells. Renewable Energy 150:78–90

    Article  CAS  Google Scholar 

  45. Macias- Rodríguez C, Álvarez M, Rivera J, Carbajal -Arizaga G, Carlos M (2019) α-Ga2O3 as a photocatalyst in the degradation of malachite green. ECS J Solid State Sci Technol 8:Q3180–Q3186

    Article  Google Scholar 

  46. Date NS, Hengne AM, Huang K-W, Chikate RC, Rode CV (2018) Single pot selective hydrogenation of furfural to 2-methylfuran over carbon supported iridium catalysts. Green Chem 20:2027–2037

    Article  CAS  Google Scholar 

  47. Caglar A, Kivrak H (2019) Highly active carbon nanotube supported PdAu alloy catalysts for ethanol electrooxidation in alkaline environment. Int J Hydrogen Energy 44:11734–11743

    Article  CAS  Google Scholar 

  48. Ulas B, Caglar A, Kivrak A, Aktas N, Kivrak H (2020) Tailoring the metallic composition of Pd, Pt, and Au containing novel trimetallic catalysts to achieve enhanced formic acid electrooxidation activity. Ionics 26:3109–3121

    Article  CAS  Google Scholar 

  49. Li J, Tian B, Li T, Dai S, Weng Y, Lu J, Xu X, Jin Y, Pang R, Hua Y (2018) Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity. Int J Nanomed 13:1411

    Article  CAS  Google Scholar 

  50. Ghita R, Logofatu C, Negrila C-C, Trupina L, Cotirlan-Simioniuc C (2017) Surface modification of III-V compounds substrates for processing technology. InTech, London

    Book  Google Scholar 

  51. Karthik PE, Raja KA, Kumar SS, Phani KLN, Liu Y, Guo S-X, Zhang J, Bond AM (2015) Electroless deposition of iridium oxide nanoparticles promoted by condensation of [Ir(OH)6]2− on an anodized Au surface: application to electrocatalysis of the oxygen evolution reaction. RSC Adv 5:3196–3199

    Article  CAS  Google Scholar 

  52. Caglar A, Cogenli MS, Yurtcan AB, Alal O, Kivrak H (2021) Remarkable activity of a ZnPdPt anode catalyst: synthesis, characterization, and formic acid fuel cell performance. J Phys Chem Solids 156:110163

    Article  CAS  Google Scholar 

  53. Duan D, Yin X, Wang Q, Liu S, Wang Y (2018) Performance evaluation of borohydride electrooxidation reaction with ternary alloy Au–Ni–Cu/C catalysts. J Appl Electrochem 48:835–847

    Article  CAS  Google Scholar 

  54. Šljukić B, Milikić J, Santos DMF, Sequeira CAC, Macciò D, Saccone A (2014) Electrocatalytic performance of Pt–Dy alloys for direct borohydride fuel cells. J Power Sources 272:335–343

    Article  Google Scholar 

  55. Yang F, Cheng K, Ye K, Wei X, Xiao X, Guo F, Wang G, Cao D (2014) High performance of Au nanothorns supported on Ni foam substrate as the catalyst for NaBH4 electrooxidation. Electrochim Acta 115:311–316

    Article  CAS  Google Scholar 

  56. Simões M, Baranton S, Coutanceau C (2009) Electrooxidation of sodium borohydride at Pd, Au, and PdxAu1−x carbon-supported nanocatalysts. J Phys Chem C 113:13369–13376

    Article  Google Scholar 

  57. Hosseini MG, Abdolmaleki M, Nasirpouri F (2013) Investigation of the porous nanostructured Cu/Ni/AuNi electrode for sodium borohydride electrooxidation. Electrochim Acta 114:215–222

    Article  CAS  Google Scholar 

  58. Duan DH, Wang Q, Liu HH, You X, Liu SB, Wang YF (2016) Investigation of carbon-supported Ni@Ag core-shell nanoparticles as electrocatalyst for electrooxidation of sodium borohydride. J Solid State Electrochem 20:2699–2711

    Article  CAS  Google Scholar 

  59. Hansu TA, Caglar A, Sahin O, Kivrak H (2020) A comparatıve study for sodıum borohydrıde dehydrogenatıon and electrooxıdatıon on cerıum and cobalt catalysts. Int J Ecosyst Ecol Sci IJEES 10:389–400

    Article  Google Scholar 

  60. Song CY, Li BP, Cheng K, Ye K, Zhu K, Cao DX, Wang GL (2018) Synthesis and investigation of a high-activity catalyst: Au nanoparticles modified metalic Ti microrods for NaBH4 electrooxidation. Int J Hydrogen Energy 43:3688–3696

    Article  CAS  Google Scholar 

  61. Wang Q, Chen FY, Liu YX, Zhang N, An L, Johnston RL (2017) Bifunctional electrocatalysts for oxygen reduction and borohydride oxidation reactions using Ag3Sn nanointermetallic for the ensemble effect. ACS Appl Mater Interfaces 9:35701–35711

    Article  CAS  PubMed  Google Scholar 

  62. Liu H, George MG, Ge N, Muirhead D, Shrestha P, Lee J, Banerjee R, Zeis R, Messerschmidt M, Scholta J (2018) Microporous layer degradation in polymer electrolyte membrane fuel cells. J Electrochem Soc 165:F3271

    Article  CAS  Google Scholar 

  63. Liu J, Xie Y, Nan Y, Gou G, Li X, Fang Y, Wang X, Tang Y, Yang H, Ma J (2017) ZnCo2O4 nanoparticles derived from dual-metal-organic-frameworks embedded in multiwalled carbon nanotubes: a favorable electrocatalyst for the water splitting. Electrochim Acta 257:233–242

    Article  CAS  Google Scholar 

  64. Hamad AR, Calis H, Caglar A, Kivrak H, Kivrak A (2022) Indole-based novel organic anode catalyst for glucose electrooxidation. Int J Energy Res 46:1659–1671

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Aykut Caglar contributed to methodology/study design, writing of the original draft, and visualization; Sefika Kaya contributed to methodology/study design, writing of the original draft, and visualization; Hilal Kivrak contributed to Supervision, writing, reviewing, and editing of the manuscript, resources, investigation, and project administration

Corresponding authors

Correspondence to Aykut Caglar or Hilal Kivrak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caglar, A., Kaya, S. & Kivrak, H. Characterization and electrooxidation activity of ternary metal catalysts containing Au, Ga, and Ir for enhanced direct borohydride fuel cells. J Appl Electrochem 53, 1207–1218 (2023). https://doi.org/10.1007/s10800-023-01847-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01847-6

Keywords

Navigation