Skip to main content
Log in

Evaluation of Co–Au bimetallic nanoparticles as anode electrocatalyst for direct borohydride-hydrogen peroxide fuel cell

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Carbon-supported Co–Au bimetallic nanoparticles with different Co/Au atomic ratios were prepared through two-step reduction in a reverse microemulsion system. The prepared catalysts were investigated as anode electrocatalysts for the electrooxidation of borohydride through X-ray diffractomer, transmission electron microscopy, cyclic voltammetry, chronoamperometry, chronopotentiometry, electrochemical impedance spectroscopy (EIS), and fuel cell test. Results showed that the Co4–Au1/C catalyst presents the highest catalytic activity and the lowest electrochemical impedance for BH4 electro-oxidation with the electron-transfer number of 4.1 among all the resultant catalysts. In addition, a laboratory direct borohydride-hydrogen peroxide fuel cell (DBHFC) with Co4–Au1/C anode obtains the maximum power density as high as 102.4 mW cm−2, which was 2.14 times that obtained when Au/C catalyst was used. All these results are indicating that the Co4–Au1/C is an efficient anode catalyst for direct borohydride-hydrogen peroxide fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Miley GH, Luo N, Mather J, Bruton R, Hawkins G, Gu LF, Byrd E, Gimlin R, Shrestha PJ, Benavides G, Laystrom J, Carroll D (2007) Direct NaBH4/H2O2 fuel cells. J Power Source 165:509–516

    Article  CAS  Google Scholar 

  2. Merino-Jiménez I, Poonce de León C, Shah AA, Walsh FF (2019) Developments in direct borohydride fuel cells and remaining challenges. J Power Source 219:339–357

    Article  CAS  Google Scholar 

  3. An L, Jung CY (2017) Transport phenomena in direct borohydride fuel cells. Appl Energy 205:1270–1282

    Article  CAS  Google Scholar 

  4. Olu PY, Bonnefont A, Braesch G, Martin V, Savinova VR, Chatenet M (2018) Influence of the concentration of borohydride towards hydrogen production and escape for borohydride oxidation reaction on Pt and Au electrodes-experimental and modelling insights. J Power Source 375:300–309

    Article  CAS  Google Scholar 

  5. Braesch G, Bonnefont A, Martin V, Savinova ER, Chatenet M (2018) Borohydride oxidation reaction mechanisms and poisoning effects on Au, Pt and Pd bulk electrodes: From model (low) to direct borohydride fuel cell operating (high) concentrations. Electrochim Acta 273:483–494

    Article  CAS  Google Scholar 

  6. Milikic J, Stamenovic U, Vodnik V, Ahrenkiel SP, Sljuki B (2019) Gold nanorod-polyaniline composites: Synthesis and evaluation as anode electrocatalysts for direct borohydride fuel cells. Electrochim Acta 328:135115–135120

    Article  CAS  Google Scholar 

  7. Santos DMF, Sequeira CAC (2010) Cyclic voltammetry investigation of borohydride oxidation at a gold electrode. Electrochim Acta 55:6775–6781

    Article  CAS  Google Scholar 

  8. Nagle LC, Rohan JF (2011) Nanoporous gold anode catalyst for direct borohydride fuel cell. Int J Hydrogen Energy 36:10319–10326

    Article  CAS  Google Scholar 

  9. Karabiberoğlu SU, Pelit L, Gelmez B, Dursun Z (2011) Electrocatalytic oxidation of sodium borohydride on metal ad-atom modified Au(111) single crystal electrodes in alkaline solution. Int J Hydrogen Energy 36:12678–12685

    Article  CAS  Google Scholar 

  10. Lima FHB, Pasqualeti AM, Concha MBM, Chatenet M, Ticianelli EA (2012) Borohydride electrooxidation on Au and Pt electrodes. Electrochim Acta 84:202–212

    Article  CAS  Google Scholar 

  11. Finkelstein DA, Mota ND, Cohen JL, Abruña HD (2009) Rotating disk electrode (RDE) investigation of BH4- and BH3OH- electro-oxidation at Pt and Au: implications for BH4- fuel cells. J Phys Chem C 113:19700–19712

    Article  CAS  Google Scholar 

  12. Chatenet M, Lima FNB, Ticianelli EA (2010) Gold is not a faradaic-efficient borohydride oxidation electrocatalyst: An online electrochemical mass spectrometry study. J Electrochem Soc 157:B697–B704

    Article  CAS  Google Scholar 

  13. Atwan MH, Macdonald CLB, Northwood DO, Gyenge EL (2006) Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: electrocatalysis and fuel cell performance. J Power Source 158:36–44

    Article  CAS  Google Scholar 

  14. Tamašauskaitė-Tamašiūnaitė L, Balčiūnaitė A, Šimkūnaitė D, Selskis A (2012) Self-ordered titania nanotubes and flat surfaces as a support for the deposition of nanostructured Au-Ni catalyst: enhanced electrocatalytic oxidation of borohydride. J Power Source 202:85–91

    Article  CAS  Google Scholar 

  15. Pei F, Wang Y, Wang XY, He PY, Chen QQ, Wang XY, Wang H, Yi LH, Guo J (2010) Performance of supported Au-Co alloy as the anode catalyst of direct borohydride-hydrogen peroxide fuel cell. Int J Hydrogen Energy 35:8136–8142

    Article  CAS  Google Scholar 

  16. Tegou A, Armyanov S, Valova E, Steenhaut O, Hubin A, Kokkinidis G, Sotiropoulos S (2009) Mixed platinum-gold electrocatalysts for borohydride oxidation prepared by the galvanic replacement of nickel deposits. J Electroanal Chem 634:104–110

    Article  CAS  Google Scholar 

  17. He PY, Wang XY, Fu P, Wang H, Yi LH (2011) The studies of performance of the Au electrode modified by Zn as the anode electrocatalyst of direct borohydride fuel cell. Int J Hydrogen Energy 36:8857–8863

    Article  CAS  Google Scholar 

  18. Simões M, Baranton S, Coutanceau C (2009) Electrooxidation of sodium borohydride at Pd, Au, and PdxAu1-x carbon-supported nanocatalysts. J Phys Chem C 113:13369–13376

    Article  CAS  Google Scholar 

  19. Gouda MH, Gouveia W, Elessawy NA, Sljukic B, Nassr ABAA, Santos DMF (2020) Simple design of PVA-based blend doped with SO4(PO4)-functionalised TiO2 as an effective membrane for direct borohydride fuel cells. Int J Hydrogen Energy 45:15226–15238

    Article  CAS  Google Scholar 

  20. Oliveira RCP, Sevim M, Šljukić B, Sequeira CAC, Metin Ö, Santos DMF (2020) Mesoporous graphitic carbon nitride-supported binary MPt (M: Co, Ni, Cu)nanoalloys as electrocatalysts for borohydride oxidation and hydrogen evolution reaction. Catal Today 357:291–301

    Article  CAS  Google Scholar 

  21. Guillaume B, Wang ZY, Shrihari S, Oshchepkov AG, Antoine B, Savinova ER, Vijay R, Marian C (2020) A high performance direct borohydride fuel cell using bipolar interfaces and noble metal-free Nibased anodes. J Mater Chem A 8:20543–20552

    Article  Google Scholar 

  22. Balčiūnaitė A, Zabielaitė A, Tamašauskaitė-Tamašiūnaitė L, Norkus E (2018) Employment of fiber-shaped cobalt modified with gold nanoparticles as anode in direct borohydride and hydrazine fuel cells. ECS Transact 85(13):935–941

    Article  CAS  Google Scholar 

  23. Balciunaite A, Zabielaite A, Tamasauskaite-Tamasiunaite L, Norkus E (2018) Employment of fiber-shaped Co modified with Au nanoparticles as anode in direct NaBH4-H2O2 and N2H4-H2O2 fuel cells. J Electrochem Soc 165(14):F1249–F1253

    Article  CAS  Google Scholar 

  24. Duan DH, Liang JW, Liu HH, You X, Wei HK, Wei GQ, Liu SB (2015) The effective carbon supported core-shell structure of Ni@Au catalysts for electro-oxidation of borohydride. Int J Hydrogen Energy 40:488–500

    Article  CAS  Google Scholar 

  25. Duan DH, Liu HH, You X, Wei HK, Liu SB (2015) Anodic behavior of carbon supported Cu@Ag core-shell nanocatalysts in direct borohydride fuel cells. J Power Source 293:292–300

    Article  CAS  Google Scholar 

  26. Duan DH, Wang Q, Liu HH, You X, Liu SB, Wang YF (2016) Investigation of carbon supported Ni@Ag core-shell nanoparticles as electrocatalyst for electrooxidation of sodium borohydride. J Solid State Electrochem 20:2699–2711

    Article  CAS  Google Scholar 

  27. Duan DH, You X, Liang JW, Liu SB, Wang YF (2015) Carbon supported Cu-Pd nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cells. Electrochim Acta 176:1126–1135

    Article  CAS  Google Scholar 

  28. Yang F, Cheng K, Wang GL, Cao DX (2015) Preparation of Au nanosheets supported on Ni foam and its electrocatalytic performance towards NaBH4 oxidation. Electrochim Acta 159:111–115

    Article  CAS  Google Scholar 

  29. Gyenge E (2004) Electrooxidation of borohydride on platinum and gold electrodes: Implications for direct borohydride fuel cell. Electrochim Acta 49:965–978

    Article  CAS  Google Scholar 

  30. Chen D, Liu S, Li J, Zhao N, Shi C, Du X, Sheng J (2009) Nanometer Ni and core/shell Ni/Au nanoparticles with controllable dimensions synthesized in reverse microemulsion. J Alloys Compd 475:494–500

    Article  CAS  Google Scholar 

  31. Zhu H, Li X, Wang F (2011) Synthesis and characterization of Cu@Pt/C core-shell structured catalysts for proton exchange membrane fuel cell. Int J Hydrogen Energy 36:9151–9154

    Article  CAS  Google Scholar 

  32. Cheng H, Scott K (2006) Determination of kinetic parameters for borohydride oxidation on a rotating Au disk electrode. Electrochim Acta 51:3429–3433

    Article  CAS  Google Scholar 

  33. Előd G, Mohammed A, Derek N (2006) Electrocatalysis of borohydride oxidation on colloidal Pt and Pt-alloys (Pt-Ir, Pt-Ni, and Pt-Au) and application for direct borohydride fuel cell anodes. J Electrochem Soc 153(1):A150–A158

    Article  CAS  Google Scholar 

  34. Jadranka M, Gordana C, c-Marjanovic, Slavko M, Diogo M.F. Santos, César A.C. Sequeira, Biljana Š, (2016) Pd/c-PANI electrocatalysts for direct borohydride fuel cells. Electrochim Acta 213:298–305

    Article  CAS  Google Scholar 

  35. Lai YQ, Li Y, Jiang LX, Xu W, Lv XJ, Li J, Liu YX (2012) Electrochemical behaviors of Co-deposited Pb/Pb-MnO2 composite anode in sulfuric acid solution-Tafel and EIS investigations. J Electroanal Chem 671:16–23

    Article  CAS  Google Scholar 

  36. Kiran V, Kalidindi SB, Jagirdar BR, Sampath S (2011) Electrochemical oxidation of boron containing compounds on titanium carbide and its implications to direct fuel cells. Electrochim Acta 56:10493–10499

    Article  CAS  Google Scholar 

  37. Burstein GT (2005) A hundred years of Tafel’s equation: 1905–2005. Corros Sci 12:2858–2870

    Article  CAS  Google Scholar 

  38. Cui N, Luo JL (1998) Effects of oxide additions on electrochemical hydriding and dehydriding behavior of Mg2Ni-type hydrogen storage alloy electrode in 6 M KOH solution. Electrochim Acta 44:711–720

    Article  CAS  Google Scholar 

  39. Birry L, Lasia A (2004) Studies of the hydrogen evolution reaction on Raney nickel-molybdenum electrodes. J Appl Electrochem 34(7):735–749

    Article  CAS  Google Scholar 

  40. Kubisztal J, Budniok A, Lasia A (2007) Study of the hydrogen reaction on nickel- based composite coatings containing molybdenum powder. Int J Hydrogen Energy 32:1211–1218

    Article  CAS  Google Scholar 

  41. Abdel-Rehim SS, Khaled KF, Abd-Elshafi NS (2006) Electrochemical frequency modulation as a new technique for monitoring corrosion inhibition of iron in acid media by new thiourea derivative. Electrochim Acta 51:3269–3277

    Article  CAS  Google Scholar 

  42. Kim JH, Kim HS, Kang YM, Song MA, Rajendran S, Han SC, Jung DH, Lee JY (2004) Carbon-supported and unsupported Pt anodes for direct borohydride liquid fuel cells. J Electrochem Soc 151:A1039–A1043

    Article  CAS  Google Scholar 

  43. Hosseini MG, Abdolmaleki M, Nasirpouri F (2013) Investigation of the porous nanostructured Cu/Ni/AuNi electrode for sodium borohydride electrooxidation. Electrochim Acta 114:215–222

    Article  CAS  Google Scholar 

  44. Wang K, Lu J, Zhuang L (2005) Direct determination of diffusion coefficient for borohydride anions in alkaline solutions using chronoamperometry with spherical Au electrodes. J Electroanal Chem 585:191–196

    Article  CAS  Google Scholar 

  45. Denault G, Mirkin MV, Bard AJ (1991) Direct determination of diffusion coefficients by chronoamperometry at microdisk electrodes. J Electroanal Chem 308:27–38

    Article  Google Scholar 

  46. Ponce de León C, Walsh FC, Patrissi CJ, Medeiros MG, Bessette RR, Reeve RW, Lakeman JB, Rose A, Browning D (2008) A direct borohydride-peroxide fuel cell using a Pd/Ir alloy coated microfibrous carbon cathode. Electrochem Commun 10:1610–1613

    Article  CAS  Google Scholar 

  47. Yi LH, Hu Y, Fei JJ, Li J, Yang CG, WangXY, (2019) Carbon-supported Pd-Co nanocatalyst as highly active anodic electrocatalyst for direct borohydride/hydrogen peroxide fuel cells. J Solid State Electrochem 23:1739–1748

    Article  CAS  Google Scholar 

  48. Taek Hyun Oh (2021) Gold-based bimetallic electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride-hydrogen peroxide fuel cell. Renew Energy 163:930–938

    Article  CAS  Google Scholar 

  49. Li BP, Yan Q, Song CY, Yan P, Ye K, Cheng K, Zhu K, Yan J, Cao DX, Wang GL (2019) Reduced graphene oxide foam supported CoNi nanosheets as an efficient anode catalyst for direct borohydride hydrogen peroxide fuel cell. Appl Surf Sci 491:659–669

    Article  CAS  Google Scholar 

  50. Li BP, Song CY, Zhang DM, Ye K, Cheng K, Zhu K, Yan J, Cao DX, Wang GL (2019) Novel self-supported reduced graphene oxide foam-based CoAu electrode: an original anode catalyst for electrooxidation of borohydride in borohydride fuel cell. Carbon 152:77–88

    Article  CAS  Google Scholar 

  51. Li BP, Song CY, Huang XM, Ye K, Cheng K, Zhu K, Yan J, Cao DX, Wang GL (2019) A novel anode for direct borohydride-hydrogen peroxide fuel cell: Au nanoparticles decorated 3D self-supported reduced graphene oxide foam. ACS Sustain Chem Eng 7:11129–11137

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research and Development Program of Shanxi Province, China (201803D121120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghong Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, D., Feng, J., You, X. et al. Evaluation of Co–Au bimetallic nanoparticles as anode electrocatalyst for direct borohydride-hydrogen peroxide fuel cell. Ionics 27, 3521–3532 (2021). https://doi.org/10.1007/s11581-021-04115-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04115-9

Keywords

Navigation