Skip to main content

Advertisement

Log in

Facile synthesis of fullerene-C60 and rGO-supported KCdCl3-based halide perovskite nanocomposites toward effective electrode material for supercapacitor

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The family of halide perovskite materials is extremely large and has gained huge attention because of their low manufacturing cost and extraordinary structural, optical, electrical, and optoelectronic properties. These materials also deliver a pattern for designing new materials for energy conversion and energy storage applications. Here, we synthesized potassium cadmium chloride KCdCl3-based halide perovskite nanocomposites with rGO and fullerene-C60 by facile solvothermal method and studied their physical and electrochemical properties. The orthorhombic phase of KCdCl3 was confirmed from XRD spectra, and the existence of constituent elements (K, Cd, Cl, and C) was confirmed from EDX analysis. SEM images evident the successful anchoring of KCdCl3 particles over rGO and C60. BET results revealed the high surface area, pore radius, and pore volume of the KCdCl3/C60 electrodes. Furthermore, the electrochemical measurements demonstrated that KCdCl3/C60-based electrodes have a higher specific capacitance of 1135 F/g at 5 mV/s and cyclic stability (97.6% retention over 3000th cycles) than other grown electrodes. Also, GCD measurement results revealed that KCdCl3/C60 electrode has a high specific capacitance of 1420 F/g, an energy density of 2052 Wh/kg, and a power density of 4.19 W/kg at 1.0 A/g than other electrodes. Finally, intensive discussion proposed that halide perovskite nanocomposite electrodes can be used efficiently as supercapacitors electrode materials for future development in this field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Raheem A, Abbasi SA, Memon A et al (2016) Renewable energy deployment to combat energy crisis in Pakistan. Energy Sustain Soc 6:16. https://doi.org/10.1186/s13705-016-0082-z

    Article  Google Scholar 

  2. Yao L, Yang B, Cui H et al (2016) Challenges and progresses of energy storage technology and its application in power systems. J Mod Power Syst Clean Energy 4:519–528. https://doi.org/10.1007/s40565-016-0248-x

    Article  Google Scholar 

  3. Gür TM (2018) Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci 11:2696–2767. https://doi.org/10.1039/C8EE01419A

    Article  Google Scholar 

  4. Shaqsi AZ, Sopian K, Al-Hinai A (2020) Review of energy storage services, applications, limitations, and benefits. Energy Rep 6:288–306. https://doi.org/10.1016/j.egyr.2020.07.028

    Article  Google Scholar 

  5. Kebede AA, Kalogiannis T, Van Mierlo J, Berecibar M (2022) A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew Sustain Energy Rev 159:112213. https://doi.org/10.1016/j.rser.2022.112213

    Article  CAS  Google Scholar 

  6. Jalal NI, Ibrahim RI, Oudah MK (2021) A review on supercapacitors: types and components. J Phys Conf Ser 1973:12015. https://doi.org/10.1088/1742-6596/1973/1/012015

    Article  CAS  Google Scholar 

  7. Nagarajarao SH, Nandagudi A, Viswanatha R et al (2022) Recent Developments in supercapacitor electrodes: a mini review. ChemEngineering 6:5

    Article  CAS  Google Scholar 

  8. Najib S, Erdem E (2019) Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv 1:2817–2827. https://doi.org/10.1039/C9NA00345B

    Article  PubMed  PubMed Central  Google Scholar 

  9. Popoola I, Gondal M, Oloore L et al (2020) Fabrication of organometallic halide perovskite electrochemical supercapacitors utilizing quasi-solid-state electrolytes for energy storage devices. Electrochim Acta 332:135536. https://doi.org/10.1016/j.electacta.2019.135536

    Article  CAS  Google Scholar 

  10. Pious JK, Lekshmi ML, Muthu C et al (2017) Zero-dimensional methylammonium bismuth iodide-based lead-free perovskite capacitor. ACS Omega 2:5798–5802. https://doi.org/10.1021/acsomega.7b00973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen T-W, Ramachandran R, Chen S-M et al (2020) Developing low-cost, high performance, robust and sustainable perovskite electrocatalytic materials in the electrochemical sensors and energy sectors: “an overview.” Catalysts. 10:938

    Article  CAS  Google Scholar 

  12. Kumar R, Shukla PS, Varma GD, Bag M (2021) Synthesis of porous electrode from CH3NH3PbBr3 single crystal for efficient supercapacitor application: role of morphology on the charge storage and stability. Electrochim Acta 398:1–26. https://doi.org/10.1016/j.electacta.2021.139344

    Article  CAS  Google Scholar 

  13. Ng CH, Lim HN, Hayase S et al (2018) Cesium lead halide inorganic-based perovskite-sensitized solar cell for photo-supercapacitor application under high humidity condition. ACS Appl Energy Mater 1:692–699. https://doi.org/10.1021/acsaem.7b00103

    Article  CAS  Google Scholar 

  14. Thakur S, Paul T, Maiti S, Chattopadhyay KK (2021) All-inorganic CsPbBr3 perovskite as potential electrode material for symmetric supercapacitor. Solid State Sci 122:106769. https://doi.org/10.1016/j.solidstatesciences.2021.106769

    Article  CAS  Google Scholar 

  15. Kostopoulou A, Brintakis K, Nasikas NK, Stratakis E (2019) Perovskite nanocrystals for energy conversion and storage. Nanophotonics 8:1607–1640. https://doi.org/10.1515/nanoph-2019-0119

    Article  CAS  Google Scholar 

  16. Slonopas A, Ryan H, Norris P (2019) Ultrahigh energy density CH3NH3PbI3 perovskite based supercapacitor with fast discharge. Electrochim Acta 307:334–340. https://doi.org/10.1016/j.electacta.2019.03.221

    Article  CAS  Google Scholar 

  17. Maji P, Ray A, Sadhukhan P et al (2018) Fabrication of symmetric supercapacitor using cesium lead iodide (CsPbI3) microwire. Mater Lett 227:268–271. https://doi.org/10.1016/j.matlet.2018.05.101

    Article  CAS  Google Scholar 

  18. Malik MTU, Sarker A, Mahmud Rahat SMS, Shuchi SB (2021) Performance enhancement of graphene/GO/rGO based supercapacitors: a comparative review. Mater Today Commun 28:102685. https://doi.org/10.1016/j.mtcomm.2021.102685

    Article  CAS  Google Scholar 

  19. Cai Z, Ma YF, Wang M et al (2022) Engineering of electrolyte ion channels in MXene/holey graphene electrodes for superior supercapacitive performances. Rare Met 41:2084–2093. https://doi.org/10.1007/s12598-021-01935-6

    Article  CAS  Google Scholar 

  20. Zhou M, Yan SX, Wang Q et al (2022) Walnut septum-derived hierarchical porous carbon for ultra-high-performance supercapacitors. Rare Met 41:2280–2291. https://doi.org/10.1007/s12598-021-01957-0

    Article  CAS  Google Scholar 

  21. Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes—a review. J Mater 2:37–54. https://doi.org/10.1016/j.jmat.2016.01.001

    Article  Google Scholar 

  22. Ramadan A, Anas M, Ebrahim S et al (2020) Polyaniline/fullerene derivative nanocomposite for highly efficient supercapacitor electrode. Int J Hydrogen Energy 45:16254–16265. https://doi.org/10.1016/j.ijhydene.2020.04.093

    Article  CAS  Google Scholar 

  23. Ali SR, Faisal MM, Sanal KC, Iqbal MW (2021) Impact of carbon-based charge transporting layer on the performance of perovskite solar cells. Sol Energy 221:254–274. https://doi.org/10.1016/j.solener.2021.04.040

    Article  CAS  Google Scholar 

  24. Bairi P, Maji S, Hill JP et al (2019) Mesoporous carbon cubes derived from fullerene crystals as a high rate performance electrode material for supercapacitors. J Mater Chem A 7:12654–12660. https://doi.org/10.1039/C9TA00520J

    Article  CAS  Google Scholar 

  25. Tienne LGP, Candido L, da Cruz S, de SM B et al (2022) Reduced graphene oxide synthesized by a new modified Hummer’s method for enhancing thermal and crystallinity properties of poly(vinylidene fluoride). J Mater Res Technol 18:4871–4893. https://doi.org/10.1016/j.jmrt.2022.04.092

    Article  CAS  Google Scholar 

  26. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  27. Nazim M, Kim JH (2020) Controlled size growth of thermally stable organometallic halide perovskite microrods: synergistic effect of dual-doping, lattice strain engineering, antisolvent crystallization, and band gap tuning properties. ACS Omega 5:16106–16119. https://doi.org/10.1021/acsomega.0c01667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ahmad K, Mohammad A, Mathur P, Mobin SM (2016) Preparation of SrTiO3 perovskite decorated rGO and electrochemical detection of nitroaromatics. Electrochim Acta 215:435–446. https://doi.org/10.1016/j.electacta.2016.08.123

    Article  CAS  Google Scholar 

  29. Jing F, Ma Z, Wang J et al (2022) Oxygen vacancy inducing phase transition during charge storage in MnOx@rGO supercapacitor electrode. Chem Eng J 435:135103. https://doi.org/10.1016/j.cej.2022.135103

    Article  CAS  Google Scholar 

  30. Amar VS, Houck JD, Maddipudi B et al (2021) Hydrothermal liquefaction (HTL) processing of unhydrolyzed solids (UHS) for hydrochar and its use for asymmetric supercapacitors with mixed (Mn,Ti)-Perovskite oxides. Renew Energy 173:329–341. https://doi.org/10.1016/j.renene.2021.03.126

    Article  CAS  Google Scholar 

  31. Ajay KM, Dinesh MN, Byatarayappa G et al (2021) Electrochemical investigations on low cost KOH activated carbon derived from orange-peel and polyaniline for hybrid supercapacitors. Inorg Chem Commun 127:108523. https://doi.org/10.1016/j.inoche.2021.108523

    Article  CAS  Google Scholar 

  32. Munawar T, Rehman MN, ur, Nadeem MS et al (2021) Facile synthesis of Cr-Co co-doped CdO nanowires for photocatalytic, antimicrobial, and supercapacitor applications. J Alloys Compd 885:160885. https://doi.org/10.1016/j.jallcom.2021.160885

    Article  CAS  Google Scholar 

  33. Karthikeyan S, Narenthiran B, Sivanantham A et al (2021) Supercapacitor: Evolution and review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.02.526

  34. Pallavolu MR, Gaddam N, Banerjee AN et al (2022) Facile construction and controllable design of CoTiO3@Co3O4/NCNO hybrid heterojunction nanocomposite electrode for high-performance supercapacitors. Electrochim Acta 407:139868. https://doi.org/10.1016/j.electacta.2022.139868

    Article  CAS  Google Scholar 

  35. Yang D, Xu M, Liang X et al (2022) Facile synthesis of Pr-doped Co3O4 nanoflakes on the nickel-foam for high performance supercapacitors. Electrochim Acta 406:139815. https://doi.org/10.1016/j.electacta.2021.139815

    Article  CAS  Google Scholar 

  36. Ates M (2011) Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces. Prog Org Coat 71:1–10. https://doi.org/10.1016/j.porgcoat.2010.12.011

    Article  CAS  Google Scholar 

  37. Xavier AR, Ravichandran AT, Vijayakumar S et al (2022) Synthesis and characterization of Sr-doped CdO nanoplatelets for supercapacitor applications. J Mater Sci Mater Electron 33:8426–8434. https://doi.org/10.1007/s10854-021-06329-z

    Article  CAS  Google Scholar 

  38. Sehrish R, Manzoor S, Munawar T et al (2022) Hydrothermal preparation of LaNdZr2O7–SnSe nanocomposite for electrochemical supercapacitor and degradation of contaminants’ applications. J Energy Storage 52:104930. https://doi.org/10.1016/j.est.2022.104930

    Article  Google Scholar 

  39. Munawar T, Mukhtar F, Nadeem MS et al (2022) Fabrication of dual Z-scheme TiO2-WO3-CeO2 heterostructured nanocomposite with enhanced photocatalysis, antibacterial, and electrochemical performance. J Alloys Compd 898:162779. https://doi.org/10.1016/j.jallcom.2021.162779

    Article  CAS  Google Scholar 

  40. Puente Santiago AR, Fernandez-Delgado O, Gomez A et al (2021) Fullerenes as Key components for low-dimensional (photo)electrocatalytic nanohybrid materials. Angew Chem Int Ed 60:122–141. https://doi.org/10.1002/anie.202009449

    Article  CAS  Google Scholar 

  41. Xu T, Shen W, Huang W, Lu X (2020) Fullerene micro/nanostructures: controlled synthesis and energy applications. Mater Today Nano. https://doi.org/10.1016/j.mtnano.2020.100081

    Article  Google Scholar 

  42. Narayanan S, Parikh N, Tavakoli MM et al (2021) Metal halide perovskites for energy storage applications. Eur J Inorg Chem 2021:1201–1212. https://doi.org/10.1002/ejic.202100015

    Article  CAS  Google Scholar 

  43. Oloore LE, Gondal MA, Popoola IK, Popoola AJ (2020) Cadmium sulfide quantum dots–organometallic halide perovskite bilayer electrode structures for supercapacitor applications. ChemElectroChem 7:486–492. https://doi.org/10.1002/celc.201901969

    Article  CAS  Google Scholar 

  44. Kumar R, Bag M (2021) Quantifying capacitive and diffusion-controlled charge storage from 3D bulk to 2D layered Halide Perovskite-Based porous electrodes for efficient Supercapacitor applications. J Phys Chem C 125:16946–16954. https://doi.org/10.1021/acs.jpcc.1c05493

    Article  CAS  Google Scholar 

  45. Oloore LE, Gondal MA, Popoola AJ, Popoola IK (2020) Pseudocapacitive contributions to enhanced electrochemical energy storage in hybrid perovskite-nickel oxide nanoparticles composites electrodes. Electrochim Acta 361:137082. https://doi.org/10.1016/j.electacta.2020.137082

    Article  CAS  Google Scholar 

  46. Jadhav SB, Malavekar DB, Bulakhe RN et al (2021) Dual-functional electrodeposited vertically grown Ag-La2O3 nanoflakes for non-enzymatic glucose sensing and Energy Storage Application. Surf Interfaces. https://doi.org/10.1016/j.surfin.2021.101018

    Article  Google Scholar 

  47. Li T, Mallows J, Adams K et al (2019) Thiourea bismuth iodide: crystal structure, characterization and high performance as an electrode material for supercapacitors. Batter Supercaps 2:568–575. https://doi.org/10.1002/batt.201900005

    Article  CAS  Google Scholar 

  48. Mefford JT, Hardin WG, Dai S et al (2014) Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat Mater 13:726–732. https://doi.org/10.1038/nmat4000

    Article  CAS  PubMed  Google Scholar 

  49. Yadav AA, Lokhande AC, Pujari RB et al (2016) The synthesis of multifunctional porous honey comb-like La2O3 thin film for supercapacitor and gas sensor applications. J Colloid Interface Sci 484:51–59. https://doi.org/10.1016/j.jcis.2016.08.056

    Article  CAS  PubMed  Google Scholar 

  50. Arjun N, Pan GT, Yang TCK (2017) The exploration of Lanthanum based perovskites and their complementary electrolytes for the supercapacitor applications. Results Phys 7:920–926. https://doi.org/10.1016/j.rinp.2017.02.013

    Article  Google Scholar 

  51. Rezanezhad A, Rezaie E, Ghadimi LS et al (2020) Outstanding supercapacitor performance of Nd–Mn co-doped perovskite LaFeO3@nitrogen-doped graphene oxide nanocomposites. Electrochimica Acta 335:135699

  52. Grossman PZ (2015) Energy shocks, crises and the policy process: a review of theory and application. Energy Policy 77:56–69. https://doi.org/10.1016/j.enpol.2014.11.031

    Article  Google Scholar 

  53. Li J, Luo W, Wang X et al (2022) Preparation and research of high-performance LaFeO3/RGO supercapacitor. J Solid State Electrochem. https://doi.org/10.1007/s10008-022-05165-3

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sivakkumar SR, Kim WJ, Choi JA et al (2007) Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J Power Sources 171:1062–1068. https://doi.org/10.1016/j.jpowsour.2007.05.103

    Article  CAS  Google Scholar 

  55. Dywili NR, Ntziouni A, Ikpo C et al (2019) Graphene oxide decorated nanometal-poly(anilino-dodecylbenzene sulfonic acid) for application in high performance supercapacitors. Micromachines 10:1–17. https://doi.org/10.3390/mi10020115

    Article  Google Scholar 

  56. Shao T, You H, Zhai Z et al (2017) Hollow spherical LaNiO3 supercapacitor electrode synthesized by a facile template-free method. Mater Lett 201:122–124. https://doi.org/10.1016/j.matlet.2017.04.143

    Article  CAS  Google Scholar 

  57. Vats AK, Kumar A, Rajput P, Kumar A (2022) Engineered perovskite LaCoO3/rGO nanocomposites for asymmetrical electrochemical supercapacitor application. J Mater Sci Mater Electron 33:2590–2606. https://doi.org/10.1007/s10854-021-07464-3

    Article  CAS  Google Scholar 

  58. Singh J, Goutam UK, Kumar A (2019) Hydrothermal synthesis and electrochemical performance of nanostructured cobalt free La2CuMnO6. Solid State Sci 95:1–14. https://doi.org/10.1016/j.solidstatesciences.2019.06.016

    Article  CAS  Google Scholar 

  59. Luo Z, Zhu L, Huang Y, Tang H (2013) Effects of graphene reduction degree on capacitive performances of graphene/PANI composites. Synth Met 175:88–96. https://doi.org/10.1016/j.synthmet.2013.05.008

    Article  CAS  Google Scholar 

  60. Dong C, Wu G, Wang Z et al (2020) Supercapacitor performance of perovskite La Sr MnO. Dalt Trans. https://doi.org/10.1039/C7DT03134C

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Iqbal.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, M., Munawar, T., Nadeem, M.S. et al. Facile synthesis of fullerene-C60 and rGO-supported KCdCl3-based halide perovskite nanocomposites toward effective electrode material for supercapacitor. J Appl Electrochem 53, 673–687 (2023). https://doi.org/10.1007/s10800-022-01809-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01809-4

Keywords

Navigation