Skip to main content

Advertisement

Log in

Preparation and research of high-performance LaFeO3/RGO supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this report, an RGO composite LaFeO3 material was prepared by a hydrothermal method and calcination method. The structure, morphology, and electrochemical behavior of LaFeO3/RGO composites were studied. In the composite, RGO is attached to the porous spherical LaFeO3, and the content of RGO has a great influence on the properties of the composite. The electrochemical performance of the LaFeO3/RGO sample is the best when the LaFeO3:RGO ratio reaches 1:2. When the current density is 1 A·g−1, the specific capacitance is 367.4 F·g−1, which is much higher than the sum of the current densities of LaFeO3 and RGO monomers. In addition, excellent cycle stability with a capacity retention of 89.2% after 3000 cycles at a current density of 10 A·g−1 was obtained. Overall, the electrochemical behavior of the LaFeO3/RGO composites confirms the importance of composition adjustment of composites and demonstrates their potential as supercapacitors for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shao M, Zhang R, Li Z et al (2015) ChemInform Abstract: Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications. Chem Inform 46:no-no. https://doi.org/10.1002/chin.201550240

  2. Sathiya M, Prakash AS, Ramesha K et al (2011) V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc 133:16291–16299. https://doi.org/10.1021/ja207285b

    Article  CAS  PubMed  Google Scholar 

  3. Deng G, Chen Y, Tao M et al (2009) Preparation and electrochemical properties of La0.4Sr0.6FeO3 as negative electrode of Ni/MH batteries. Int J Hydrogen Energy 34:5568–5573. https://doi.org/10.1016/j.ijhydene.2009.04.061

    Article  CAS  Google Scholar 

  4. Rezaie E, Rezanezhad A, Hajalilou A et al (2019) Electrochemical behavior of SrFe12O19/CoFe2O4 composite nanoparticles synthesized via one-pot hydrothermal method. J Alloys Compd 789:40–47. https://doi.org/10.1016/j.jallcom.2019.03.079

    Article  CAS  Google Scholar 

  5. Mefford JT, Hardin WG, Dai S et al (2014) Anion charge storage through oxygen intercalation in LaMnO 3 perovskite pseudocapacitor electrodes. Nat Mater 13:726–732. https://doi.org/10.1038/nmat4000

    Article  CAS  PubMed  Google Scholar 

  6. Elsiddig ZA, Xu H, Wang D et al (2017) Modulating Mn4+ ions and oxygen vacancies in nonstoichiometric LaMnO3 perovskite by a facile sol-gel method as high-performance supercapacitor electrodes. Electrochim Acta 253:422–429. https://doi.org/10.1016/j.electacta.2017.09.076

    Article  CAS  Google Scholar 

  7. Cao Y, Lin B, Sun Y et al (2015) Symmetric/asymmetric supercapacitor based on the perovskite-type lanthanum cobaltate nanofibers with Sr-substitution. Electrochim Acta 178:398–406. https://doi.org/10.1016/j.electacta.2015.08.033

    Article  CAS  Google Scholar 

  8. Hwang J, Rao RR, Giordano L et al (2017) Perovskites in catalysis and electrocatalysis. Science (80-) 358:751–756

  9. Wang L, Shao D, Guo J et al (2019) Superstable porous Co-coordination polymer as the electrode material for supercapacitor. J Solid State Chem 277:630–635. https://doi.org/10.1016/j.jssc.2019.06.039

    Article  CAS  Google Scholar 

  10. Tijare SN, Joshi MV, Padole PS et al (2012) Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite. Int J Hydrogen Energy 37:10451–10456. https://doi.org/10.1016/j.ijhydene.2012.01.120

    Article  CAS  Google Scholar 

  11. Wang W, Lin B, Zhang H et al (2019) Synthesis, morphology and electrochemical performances of perovskite-type oxide LaxSr1-xFeO3 nanofibers prepared by electrospinning. J Phys Chem Solids 124:144–150. https://doi.org/10.1016/j.jpcs.2018.09.011

    Article  CAS  Google Scholar 

  12. Hu Q, Yue B, Shao H et al (2021) Facile syntheses of perovskite type LaMO3 (M=Fe Co, Ni) nanofibers for high performance supercapacitor electrodes and lithium-ion battery anodes. J Alloys Compd 852:157002. https://doi.org/10.1016/j.jallcom.2020.157002

    Article  CAS  Google Scholar 

  13. Zhang Z, Huang X, Lu W et al (2020) Synthesis of 2D layered Nb2SnC at low sintering temperature and its application for high-performance supercapacitors. J Solid State Chem 288:121425. https://doi.org/10.1016/j.jssc.2020.121425

    Article  CAS  Google Scholar 

  14. Ega SP, Srinivasan P (2021) Sulfonated rGO from waste dry cell graphite rod and its hybrid with PANI as electrode for supercapacitor. J Solid State Electrochem 25:2235–2247. https://doi.org/10.1007/s10008-021-04988-w

    Article  CAS  Google Scholar 

  15. Kibona TE (2020) Synthesis of NiCo2O4/mesoporous carbon composites for supercapacitor electrodes. J Solid State Electrochem 24:1587–1598. https://doi.org/10.1007/s10008-020-04673-4

    Article  CAS  Google Scholar 

  16. Tian H, Lang X, Nan H et al (2019) Electrochimica Acta Nanosheet-assembled LaMnO 3 @ NiCo 2 O 4 nanoarchitecture growth on Ni foam for high power density supercapacitors. Electrochim Acta 318:651–659. https://doi.org/10.1016/j.electacta.2019.06.133

    Article  CAS  Google Scholar 

  17. Isacfranklin M, Yuvakkumar R, Ravi G et al (2021) Heterostructured SmCoO3/rGO composite for high-energy hybrid supercapacitors. Carbon N Y 172:613–623. https://doi.org/10.1016/j.carbon.2020.10.081

    Article  CAS  Google Scholar 

  18. Elsiddig ZA, Wang D, Xu H et al (2018) Three-dimensional nitrogen-doped graphene wrapped LaMnO3 nanocomposites as high-performance supercapacitor electrodes. J Alloys Compd 740:148–155. https://doi.org/10.1016/j.jallcom.2017.12.368

    Article  CAS  Google Scholar 

  19. Lin Z, Taberna PL, Simon P (2016) Graphene-based supercapacitors using eutectic ionic liquid mixture electrolyte. Electrochim Acta 206:446–451. https://doi.org/10.1016/j.electacta.2015.12.097

    Article  CAS  Google Scholar 

  20. Yang X, Cheng C, Wang Y et al (2013) Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science (80- ) 341:534–537. https://doi.org/10.1126/science.1239089

  21. Shafi PM, Ganesh V, Bose AC (2018) LaMnO3/RGO/PANI ternary nanocomposites for supercapacitor electrode application and their outstanding performance in all-solid-state asymmetrical device design. ACS Appl Energy Mater 1:2802–2812. https://doi.org/10.1021/acsaem.8b00459

    Article  CAS  Google Scholar 

  22. Sivakumar N, Nagaraju P, Alsalme A et al (2021) Enhanced electrochemical performance of lanthanum ferrite decorated reduced graphene oxide nanocomposite electrodes prepared by in situ microwave irradiation for energy storage applications. Int J Energy Res 45:5272–5282. https://doi.org/10.1002/er.6146

    Article  CAS  Google Scholar 

  23. Dhinesh Kumar R, Thangappan R, Jayavel R (2017) Facile preparation of LaFeO3/rGO nanocomposites with enhanced visible light photocatalytic activity. J Inorg Organomet Polym Mater 27:892–900. https://doi.org/10.1007/s10904-017-0534-8

    Article  CAS  Google Scholar 

  24. Hao P, Lin Z, Song P et al (2020) rGO-wrapped porous LaFeO3 microspheres for high-performance triethylamine gas sensors. Ceram Int 46:9363–9369. https://doi.org/10.1016/j.ceramint.2019.12.194

    Article  CAS  Google Scholar 

  25. Cheng B, Zhang W, Yang M et al (2019) Preparation and study of porous MnCo2O4@NiO nanosheets for high-performance supercapacitor. Ceram Int 45:20451–20457. https://doi.org/10.1016/j.ceramint.2019.07.022

    Article  CAS  Google Scholar 

  26. Shao T, You H, Zhai Z et al (2017) Hollow spherical LaNiO3 supercapacitor electrode synthesized by a facile template-free method. Mater Lett 201:122–124. https://doi.org/10.1016/j.matlet.2017.04.143

    Article  CAS  Google Scholar 

  27. Zhang Y, Ding J, Xu W et al (2020) Mesoporous LaFeO3 perovskite derived from MOF gel for all-solid-state symmetric supercapacitors. Chem Eng J 386:124030. https://doi.org/10.1016/j.cej.2020.124030

    Article  CAS  Google Scholar 

  28. Rao YF, Zhang Y, Han F et al (2018) Heterogeneous activation of peroxymonosulfate by LaFeO3 for diclofenac degradation: DFT-assisted mechanistic study and degradation pathways. Chem Eng J 352:601–611. https://doi.org/10.1016/j.cej.2018.07.062

    Article  CAS  Google Scholar 

  29. Xiao P, Zhong L, Zhu J et al (2015) CO and soot oxidation over macroporous perovskite LaFeO3. Catal Today 258:660–667. https://doi.org/10.1016/j.cattod.2015.01.007

    Article  CAS  Google Scholar 

  30. Zhang X, Qin J, Xue Y et al (2014) Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci Rep. https://doi.org/10.1038/srep04596

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim BG, Kim H et al (2020) Influence of the perovskite La0.8Sr0.2Mn0.5Co0.5O3-δ on the electrochemical performance of the graphene-based supercapacitor. Energies 13(12):3030. https://doi.org/10.3390/en13123030

  32. Rezanezhad A, Rezaie E, Ghadimi LS et al (2020) Outstanding supercapacitor performance of Nd–Mn co-doped perovskite LaFeO3@nitrogen-doped graphene oxide nanocomposites. Electrochim Acta 335:135699. https://doi.org/10.1016/j.electacta.2020.135699

    Article  CAS  Google Scholar 

  33. Hatzell KB, Beidaghi M, Campos JW et al (2013) A high performance pseudocapacitive suspension electrode for the electrochemical flow capacitor. Electrochim Acta 111:888–897. https://doi.org/10.1016/j.electacta.2013.08.095

    Article  CAS  Google Scholar 

  34. Nan HS, Hu XY, Tian HW (2019) Recent advances in perovskite oxides for anion-intercalation supercapacitor: a review. Mater Sci Semicond Process 94:35–50

    Article  CAS  Google Scholar 

  35. Rai A, Thakur AK (2017) Effect of Na and Mn substitution in perovskite type LaFeO3 for storage device applications. Ionics (Kiel) 23:2863–2869. https://doi.org/10.1007/s11581-017-1990-4

    Article  CAS  Google Scholar 

  36. Liang J, Zhao H, Yue L et al (2020) Recent advances in electrospun nanofibers for supercapacitors. J Mater Chem A 8:16747–16789. https://doi.org/10.1039/d0ta05100d

    Article  CAS  Google Scholar 

  37. Cao Y, Liang J, Li X et al (2021) Recent advances in perovskite oxides as electrode materials for supercapacitors. Chem Commun 57:2343–2355. https://doi.org/10.1039/d0cc07970g

    Article  CAS  Google Scholar 

  38. Cai D, Wang D, Liu B et al (2014) Three-dimensional Co3O4@NiMoO4 core/shell nanowire arrays on Ni foam for electrochemical energy storage. ACS Appl Mater Interfaces 6:5050–5055. https://doi.org/10.1021/am500060m

    Article  CAS  PubMed  Google Scholar 

  39. Mo H, Nan H, Lang X et al (2018) Influence of calcium doping on performance of LaMnO3 supercapacitors. Ceram Int 44:9733–9741. https://doi.org/10.1016/j.ceramint.2018.02.205

    Article  CAS  Google Scholar 

  40. Huang Y, Zhu M, Huang Y et al (2016) Multifunctional energy storage and conversion devices. https://doi.org/10.1002/adma.201601928

    Article  Google Scholar 

  41. Popoola I, Gondal M, Oloore L et al (2020) Fabrication of organometallic halide perovskite electrochemical supercapacitors utilizing quasi-solid-state King Abdullah Center for Atomic and Renewable Energy ( KACARE ). King Fahd University of Petroleum and Minerals, Electrochim Acta. https://doi.org/10.1016/j.electacta.2019.135536

    Article  Google Scholar 

  42. Arjun N, Pan GT, Yang TCK (2017) The exploration of Lanthanum based perovskites and their complementary electrolytes for the supercapacitor applications. Results Phys 7:920–926. https://doi.org/10.1016/j.rinp.2017.02.013

    Article  Google Scholar 

  43. Xiao P, Zhu J, Zhao D et al (2019) Porous LaFeO 3 prepared by an in situ carbon templating method for catalytic transfer hydrogenation reactions. ACS Appl Mater Interfaces 11:15517–15527. https://doi.org/10.1021/acsami.9b00506

    Article  CAS  PubMed  Google Scholar 

  44. Vinuth Raj TN, Hoskeri PA, Muralidhara HB et al (2020) Facile synthesis of perovskite lanthanum aluminate and its green reduced graphene oxide composite for high performance supercapacitors. J Electroanal Chem 858:113830. https://doi.org/10.1016/j.jelechem.2020.113830

    Article  CAS  Google Scholar 

  45. Yuan Y, Dong Z, Li Y et al (2017) Electrochemical properties of LaFeO3-rGO composite. Prog Nat Sci Mater Int 27:88–92. https://doi.org/10.1016/j.pnsc.2017.01.004

    Article  CAS  Google Scholar 

  46. Rezanezhad A, Rezaie E, Ghadimi LS et al (2020) Outstanding supercapacitor performance of Nd–Mn co-doped perovskite LaFeO3@nitrogen-doped graphene oxide nanocomposites. Elsevier Ltd

Download references

Funding

This study was supported by the Natural Science Foundation of Hebei (E2018202242).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YuJie Zhang or FanBin Meng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 681 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Luo, W., Wang, X. et al. Preparation and research of high-performance LaFeO3/RGO supercapacitor. J Solid State Electrochem 26, 1291–1301 (2022). https://doi.org/10.1007/s10008-022-05165-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05165-3

Keywords

Navigation