Skip to main content

Advertisement

Log in

TiO2 nanotube/chitosan-bioglass nanohybrid coating: fabrication and corrosion evaluation

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In present work, the effect of titania (TiO2) nanotubes formation incorporated with chitosan-58S bioactive glass (TNT/Chitosan-58S BG) on physiochemical properties of titanium substrate was studied. Samples were characterized by Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Corrosion behavior of the coated samples was investigated in Ringer solution through Tafel polarization and electrochemical impedance spectroscopy measurements. Results represented that TiO2 nanotubes orderly formed on titanium substrate through electrochemical anodizing process. Moreover, Chitosan-58S BG coating was formed on the TNT layer with appropriate adhesion strength, owing to the mechanical interlocking. Variation of applied voltage (25 and 30 V) and duration of anodizing process (30, 60 and 120 min) resulted in the formation of TiO2 nanotubes with various diameters in the range of 89–99 nm. Furthermore, electrochemical evaluations illustrated that the presence of titania nanotubes and Chitosan-58S BG on Ti substrate significantly ameliorated the corrosion resistance of Titanium substrate through reducing corrosion current density (3.486 vs. 2.854 µA cm− 2), as well as, increasing total resistance (40.417 vs. 96.875 kΩ cm2). In addition, our study revealed that the surface hardness of Ti substrate improved after two step surface treatments. In summary, appropriate mechanical and electrochemical characteristics make the TNT/Chitosan-58S BG coating, a proper choice for biomedical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang Y, Gulati K, Li Z, Di P, Liu Y (2021) Dental implant nano-engineering: advances limitations and future directions. Nanomaterials 11:2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mohammed MT, Khan ZA, Siddiquee AN (2014) Surface modifications of titanium materials for developing corrosion behavior in human body environment: a review. Procedia Mater Sci 6:1610–1618

    Article  CAS  Google Scholar 

  3. Chauhan P, Shadangi Y, Bhatnagar A, Singh V, Chattopadhyay K (2022) Influence of surface nano-structuring on microstructure, corrosion behavior and osteoblast response of commercially pure titanium treated through ultrasonic shot peening. JOM 74:584–595

    Article  CAS  Google Scholar 

  4. Weber B, Biestek T (1976) Electrolytic and chemical conversion coatings. Portcullis, USA

    Google Scholar 

  5. Huang B-H, Lu Y-J, Lan W-C, Ruslin M, Lin H-Y, Ou K-L, Saito T, Tsai H-Y, Lee C-H, Cho Y-C (2021) Surface properties and biocompatibility of anodized titanium with a potential pretreatment for biomedical applications. Metals 11:1090

    Article  CAS  Google Scholar 

  6. Al-Saady FA, Rushdi SA, Abbar AH (2020) Improvement the corrosion behavior of titanium by nanotubular oxide in a simulated saliva solution, IOP Conference series: materials science and engineering. IOP Publishing

    Google Scholar 

  7. Regonini D, Bowen CR, Jaroenworaluck A, Stevens R (2013) A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater Sci Eng R Rep 74:377–406

    Article  Google Scholar 

  8. Yu W-Q, Qiu J, Xu L, Zhang F-Q (2009) Corrosion behaviors of TiO2 nanotube layers on titanium in Hank’s solution. Biomed Mater 4:065012

    Article  PubMed  Google Scholar 

  9. Pishbin F, Mouriño V, Flor S, Kreppel S, Salih V, Ryan MP, Boccaccini AR (2014) Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants. ACS Appl Mater Interf 6:8796–8806

    Article  CAS  Google Scholar 

  10. Wang R, Cui F, Lu H, Wen H, Ma C, Li H (1995) Synthesis of nanophase hydroxyapatite/collagen composite. J Mater Sci Lett 14:490–492

    Article  CAS  Google Scholar 

  11. Song J, Chen Q, Zhang Y, Diba M, Kolwijck E, Shao J, Jansen JA, Yang F, Boccaccini AR, Leeuwenburgh SC (2016) Electrophoretic deposition of chitosan coatings modified with gelatin nanospheres to tune the release of antibiotics. ACS Appl Mater Interf 8:13785–13792

    Article  CAS  Google Scholar 

  12. Ballarre J, Aydemir T, Liverani L, Roether JA, Goldmann W, Boccaccini AR (2020) Versatile bioactive and antibacterial coating system based on silica, gentamicin, and chitosan: Improving early stage performance of titanium implants. Surf Coat Technol 381:125138

    Article  CAS  Google Scholar 

  13. Park M, Lee JE, Park CG, Lee SH, Seok HK, Choy YB (2013) Polycaprolactone coating with varying thicknesses for controlled corrosion of magnesium. J Coat Technol Res 10:695–706

    Article  CAS  Google Scholar 

  14. Alabbasi A, Liyanaarachchi S, Kannan MB (2012) Polylactic acid coating on a biodegradable magnesium alloy: an in vitro degradation study by electrochemical impedance spectroscopy. Thin Solid Films 520:6841–6844

    Article  CAS  Google Scholar 

  15. Kheirkhah M, Fathi M, Salimijazi HR, Razavi M (2015) Surface modification of stainless steel implants using nanostructured forsterite (Mg2SiO4) coating for biomaterial applications. Surf Coat Technol 276:580–586

    Article  CAS  Google Scholar 

  16. Joy-anne NO, Su Y, Lu X, Kuo P-H, Du J, Zhu D (2019) Bioactive glass coatings on metallic implants for biomedical applications. Bioact Mater 4:261–270

    Article  Google Scholar 

  17. Jing W, Feng L, Wang B, Zhang W, Xu K, Al Aboody MS, Mickymaray S, Peng K (2021) Polymer-ceramic fiber nanocomposite coatings on titanium metal implant devices for diseased bone tissue regeneration. J Sci Adv Mater Device 6:399

    Article  Google Scholar 

  18. Benhabiles M, Salah R, Lounici H, Drouiche N, Goosen M, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll 29:48–56

    Article  CAS  Google Scholar 

  19. Lin MH, Wang YH, Kuo CH, Ou SF, Huang PZ, Song TY, Chen YC, Chen ST, Wu CH, Hsueh YH (2021) Hybrid ZnO/chitosan antimicrobial coatings with enhanced mechanical and bioactive properties for titanium implants. Carbohyd Polym 257:117639

    Article  CAS  Google Scholar 

  20. Marques DM, Oliveira VDC, Souza MT, Zanotto ED, Issa JPM, Watanabe E (2020) Biomaterials for orthopedics: anti-biofilm activity of a new bioactive glass coating on titanium implants. Biofouling 36:234–244

    Article  PubMed  Google Scholar 

  21. Hench LL (1998) Bioactive materials: the potential for tissue regeneration. J Biomed Mater Res 41:511–518

    Article  CAS  PubMed  Google Scholar 

  22. Deng J, Li P, Gao C, Feng P, Shuai C, Peng S (2014) Bioactivity improvement of forsterite-based scaffolds with nano-58S bioactive glass. Mater Manuf Process 29:877–884

    Article  CAS  Google Scholar 

  23. Neupane MP, Park IS, Bae TS, Yi HK, Uo M, Watari F, Lee MH (2011) Titania nanotubes supported gelatin stabilized gold nanoparticles for medical implants. J Mater Chem 21:12078–12082

    Article  CAS  Google Scholar 

  24. Mokhtari H, Ghasemi Z, Kharaziha M, Karimzadeh F, Alihosseini F (2018) Chitosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: structural and biological properties. Appl Surf Sci 441:138–149

    Article  CAS  Google Scholar 

  25. Mohan L, Anandan C, Rajendran N (2015) Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4V in Hanks’ solution for biomedical applications. Electrochim Acta 155:411–420

    Article  CAS  Google Scholar 

  26. Neupane MP, Park IS, Lee MH (2014) Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating. Thin Solid Films 550:268–271

    Article  CAS  Google Scholar 

  27. Mehdipour M, Afshar A, Mohebali M (2012) Electrophoretic deposition of bioactive glass coating on 316L stainless steel and electrochemical behavior study. Appl Surf Sci 258:9832–9839

    Article  CAS  Google Scholar 

  28. Campanelli LC, Bortolan CC, da Silva PSCP, Bolfarini C, Oliveira NTC (2017) Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys. J Mech Behav Biomed Mater 65:542–551

    Article  CAS  PubMed  Google Scholar 

  29. Hoseinzadeh T, Ghorannevis Z, Ghoranneviss M (2017) Effect of different electrolyte concentrations on TiO 2 anodized nanotubes physical properties. Appl Phys A 123:436

    Article  Google Scholar 

  30. Zhao X, Zhu Y, Wang Y, Zhu L, Yang L, Sha Z (2015) Influence of anodic oxidation parameters of TiO 2 Nanotube arrays on morphology and photocatalytic performance. J Nanomater 2015:1

    Google Scholar 

  31. Chernozem RV, Surmeneva MA, Surmenev RA (2016) Influence of anodization time and voltage on the parameters of TiO2 nanotubes, IOP conference series: materials science and engineering. IOP Publishing, p 012025

    Google Scholar 

  32. Wang Y, Wen C, Hodgson P, Li Y (2014) Biocompatibility of TiO2 nanotubes with different topographies. J Biomed Mater Res, Part A 102:743–751

    Article  Google Scholar 

  33. Gongadze E, Kabaso D, Bauer S, Slivnik T, Schmuki P, van Rienen U, Iglič A (2011) Adhesion of osteoblasts to a nanorough titanium implant surface. Int J Nanomed 6:1801

    Google Scholar 

  34. Roach M, Williamson R, Blakely I, Didier L (2016) Tuning anatase and rutile phase ratios and nanoscale surface features by anodization processing onto titanium substrate surfaces. Mater Sci Eng, C 58:213–223

    Article  CAS  Google Scholar 

  35. Kunze J, Müller L, Macak JM, Greil P, Schmuki P, Müller FA (2008) Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochim Acta 53:6995–7003

    Article  CAS  Google Scholar 

  36. Jones JR, Ehrenfried LM, Hench LL (2006) Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27:964–973

    Article  CAS  PubMed  Google Scholar 

  37. Anicuta S-G, Dobre L, Stroescu M, Jipa I (2010) Fourier transform infrared (FTIR) spectroscopy for characterization of antimicrobial films containing chitosan. Analele Univ Ńii din Oradea Fasc Ecotoxicol Zootehnie şi Tehnol de Indust Aliment 2010:1234–1240

    Google Scholar 

  38. Han B, Zal Nezhad E, Musharavati F, Jaber F, Bae S (2018) Tribo-mechanical properties and corrosion behavior investigation of anodized Ti–V alloy. Coatings 8:459

    Article  Google Scholar 

  39. Xu Y, Liu M, Wang M, Oloyede A, Bell J, Yan C (2015) Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays. J Appl Phys 118:145301

    Article  Google Scholar 

  40. Veys-Renaux D, El Haj ZA, Rocca E (2016) Corrosion resistance in artificial saliva of titanium anodized by plasma electrolytic oxidation in Na3PO4. Surf Coat Technol 285:214–219

    Article  CAS  Google Scholar 

  41. Al-Mobarak N, Al-Swayih A (2014) Development of titanium surgery implants for improving osseointegration through formation of a titanium nanotube layer. Int J Electrochem Sci 9:32–45

    Article  Google Scholar 

  42. Mahmoudi M, Raeissi K, Karimzadeh F, Golozar M (2019) A study on corrosion behavior of graphene oxide coating produced on stainless steel by electrophoretic deposition. Surf Coat Technol 372:327–342

    Article  CAS  Google Scholar 

  43. Varea A, Pellicer E, Pané S, Nelson BJ, Suriñach S, Baró MD, Sort J (2012) Mechanical properties and corrosion behaviour of nanostructured Cu-rich CuNi electrodeposited films. Int J Electrochem Sci 7:1288–1302

    Article  CAS  Google Scholar 

  44. Chang JC, Oshida Y, Gregory RL, Andres CJ, Barco TM, Brown DT (2003) Electrochemical study on microbiology-related corrosion of metallic dental materials. Bio-Med Mater Eng 13:281–295

    CAS  Google Scholar 

  45. Tabesh E, Salimijazi H, Kharaziha M, Mahmoudi M, Hejazi M (2019) Development of an in-situ chitosan-copper nanoparticle coating by electrophoretic deposition. Surf Coat Technol 364:239–247

    Article  CAS  Google Scholar 

  46. Dikici B, Topuz M (2018) Production of annealed cold-sprayed 316L stainless steel coatings for biomedical applications and their in-vitro corrosion response. Prot Met Phys Chem Surf 54:333–339

    Article  CAS  Google Scholar 

  47. Kanta AF, Poelman M, Decroly A (2015) Electrochemical characterisation of TiO2 nanotube array photoanodes for dye-sensitized solar cell application. Sol Energy Mater Sol Cells 133:76–81

    Article  CAS  Google Scholar 

  48. Grotberg J, Hamlekhan A, Butt A, Patel S, Royhman D, Shokuhfar T, Sukotjo C, Takoudis C, Mathew MT (2016) Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V. Mater Sci Eng, C 59:677–689

    Article  CAS  Google Scholar 

  49. Farghali R, Fekry A, Ahmed RA, Elhakim H (2015) Corrosion resistance of Ti modified by chitosan–gold nanoparticles for orthopedic implantation. Int J Biol Macromol 79:787–799

    Article  CAS  PubMed  Google Scholar 

  50. Indira K, KamachiMudali U, Rajendran N (2014) In vitro bioactivity and corrosion resistance of Zr incorporated TiO2 nanotube arrays for orthopaedic applications. Appl Surf Sci 316:264–275

    Article  CAS  Google Scholar 

  51. Cui S, Yin X, Yu Q, Liu Y, Wang D, Zhou F (2015) Polypyrrole nanowire/TiO2 nanotube nanocomposites as photoanodes for photocathodic protection of Ti substrate and 304 stainless steel under visible light. Corros Sci 98:471–477

    Article  CAS  Google Scholar 

  52. Mohan L, Anandan C, Rajendran N (2015) Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti–6Al–7Nb for biomedical applications. Mater Sci Eng, C 50:394–401

    Article  CAS  Google Scholar 

  53. Tamjid E, Bagheri R, Vossoughi M, Simchi A (2011) Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites. Mater Sci Eng, C 31:1526–1533

    Article  CAS  Google Scholar 

  54. Gebhardt F, Seuss S, Turhan MC, Hornberger H, Virtanen S, Boccaccini AR (2012) Characterization of electrophoretic chitosan coatings on stainless steel. Mater Lett 66:302–304

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathallah Karimzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SafaviPour, M., Mokhtari, H., Mahmoudi, M. et al. TiO2 nanotube/chitosan-bioglass nanohybrid coating: fabrication and corrosion evaluation. J Appl Electrochem 53, 177–189 (2023). https://doi.org/10.1007/s10800-022-01761-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01761-3

Keywords

Navigation