Skip to main content
Log in

Magnetic field effects on electrochemical dissolution behavior and surface quality of electrochemical machining of Ti-48Al-2Cr-2Nb alloy

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Magnetic field as a simple and powerful tool is usually applied to electrochemical machining, but the influencing mechanism is a very complicated problem. Ti-48Al-2Cr-2Nb (at. %) alloy dissolution behavior without and with magnetic field was carried out. Open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), cyclic potentiodynamic polarization (CPP), chronoamperometry (CA), and observation of corrosion morphology combined with energy spectrum analysis were applied. In addition, multifractal spectrum and surface roughness were used to evaluate uniformity and roughness of surface topography of the electrochemical machining (ECM) of Ti-48Al-2Cr-2Nb alloy. The results prove that the magnetic field improves the response rate of adsorption reaction, enhances the decomposition potential and the sensitivity to local corrosion, suppresses the fluctuation of the current density, and reduces the dissolution rate during electrochemical corrosion of Ti-48Al-2Cr-2Nb alloy. The results also verify that the improvement of magnetic field on uniformity of corrosion contributes to obtain an isotropic microscopic surface in the electrochemical machining of Ti-48Al-2Cr-2Nb alloy. The surface roughness of the electrochemical machined surface of Ti-48Al-2Cr-2Nb alloy without and with magnetic field is Ra 2.46 ± 0.14 μm and 1.73 ± 0.28 μm, respectively, which confirms that the deterioration in the preferential corrosion of γ-TiAl phase caused by magnetic field does not become a detrimental factor in obtaining a smooth machined surface. So, magnetic field has a positive effect in the electrochemical machining process of Ti-48Al-2Cr-2Nb alloy and can be applied to the actual production.

Graphical abstract

The influence of magnetic field on electrochemical dissolution behavior and surface quality of electrochemical machining of Ti-48Al-2Cr-2Nb alloy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xu Z, Wang Y (2021) Electrochemical machining of complex components of aero-engines: developments, trends, and technological advances. Chinese J Aeronaut 34:28–53. https://doi.org/10.1016/j.cja.2019.09.016

    Article  Google Scholar 

  2. Pawar A, Kamble D, Ghorpade RR (2021) Overview on electro-chemical machining of super alloys. Mater Today 46:696–700. https://doi.org/10.1016/j.matpr.2020.12.017

    Article  CAS  Google Scholar 

  3. Bradley C, Samuel J (2018) Controlled phase interactions between pulsed electric fields, ultrasonic motion, and magnetic fields in an anodic dissolution cell. J Manuf Sci Eng 140:041010–041011. https://doi.org/10.1115/1.4038569

    Article  Google Scholar 

  4. Ayyappan S, Sivakumar K, Kalaimathi M (2015) Electrochemical machining of 20MnCr5 alloy steel with magnetic flux assisted vibrating tool. Proc Inst Mech Eng, Part C 231:1956–1965. https://doi.org/10.1177/0954406215623310

    Article  CAS  Google Scholar 

  5. Enache S, Opran C (1989) The mathematical model of the E.C.M. with magnetic field. CIRP Ann 38:207–210. https://doi.org/10.1016/S0007-8506(07)62686-9

    Article  Google Scholar 

  6. Fan Z, Wang T, Zhong L (2004) The mechanism of improving machining accuracy of ECM by magnetic field. J Mater Process Tech 149:409–413. https://doi.org/10.1016/j.jmatprotec.2003.12.025

    Article  CAS  Google Scholar 

  7. Frotscher O, Schaarschmidt I, Lauwers D, Paul R, Meinke M, Steinert P, Schubert A, Schröder W, Richter M (2022) Investigation of Lorentz force–induced flow of NaNO3-electrolyte for magnetic field–assisted electrochemical machining. Int J Adv Manuf Technol 121:937–947. https://doi.org/10.1007/s00170-022-09349-z

    Article  Google Scholar 

  8. Li L, Baoji MA (2018) Effect of magnetic field on anodic dissolution in electrochemical machining. Int J Adv Manuf Technol 94:1177–1187. https://doi.org/10.1007/s00170-017-0983-9

    Article  Google Scholar 

  9. Lilong BM, Cheng P, Yun K, Yin P (2019) Effect of magnetic field on the electrochemical machining localization. Int J Adv Manuf Technol 102:949–956. https://doi.org/10.1007/s00170-018-3185-1

    Article  Google Scholar 

  10. Vinod Kumaar JR, Thanigaivelan R (2020) Performance of magnetic field-assisted citric acid electrolyte on electrochemical micro-machining of SS 316L. Mater Manuf Process 35:969–977. https://doi.org/10.1080/10426914.2020.1750630

    Article  CAS  Google Scholar 

  11. Zhai K, Tang L, Liu J, Zhang X, Yan Y, Feng X (2021) Study on improving the surface roughness of multi-stage internal cone hole by rotating magnetic field assisted electrochemical machining. Int J Adv Manuf Technol 115:1227–1236. https://doi.org/10.1007/s00170-021-06930-w

    Article  Google Scholar 

  12. Ling S, Jia Y, Ning F, Li H, Xiao Q, Lu Z (2018) Effect of magnetic field on anodic dissolution of nickel in an alkaline solution with chloride ions. ECS Trans 85:615–623. https://doi.org/10.1149/08513.0615ecst

    Article  CAS  Google Scholar 

  13. Klocke F, Herrig T, Zeis M, Klink A (2015) Experimental research on the electrochemical machinability of selected γ-TiAl alloys for the manufacture of future aero engine components. Procedia CIRP 35:50–54. https://doi.org/10.1016/j.procir.2015.08.050

    Article  Google Scholar 

  14. Li HY, Klocke F, Zeis M, Herrig T, Heidemanns L (2018) Experimental study on the ECM and PECM of pressed and casted γ-TiAl alloys for aero engine applications. Procedia CIRP 68:768–771. https://doi.org/10.1016/j.procir.2017.12.135

    Article  Google Scholar 

  15. Wang Y, Xu Z, Hu J, Zhang A (2020) Surface integrity analysis of electrochemical machining of γ-TiAl alloys. Mater Today Commun 25:101686. https://doi.org/10.1016/j.mtcomm.2020.101686

    Article  CAS  Google Scholar 

  16. Wang Y, Xu Z, Meng D, Liu L, Fang Z (2022) Study on surface roughness of large size TiAl intermetallic blade in electrochemical machining. J Manuf Process 76:1–10. https://doi.org/10.1016/j.jmapro.2022.01.035

    Article  Google Scholar 

  17. Wang X, Zhao J, Hu Y, Li L, Wang C (2014) Effects of the Lorentz force and the gradient magnetic force on the anodic dissolution of nickel in HNO3+NaCl solution. Electrochim Acta 117:113–119. https://doi.org/10.1016/j.electacta.2013.11.100

    Article  CAS  Google Scholar 

  18. Liu S, Shao Y, Yan C, Yuan B, Li L, Wang C (2020) Effects of the magnetic field on the anodic dissolution of Ni│H3PO4 + KSCN system. Corros Sci 169:108614. https://doi.org/10.1016/j.corsci.2020.108614

    Article  CAS  Google Scholar 

  19. Luo S, Elouarzaki K, Xu ZJ (2022) Electrochemistry in magnetic fields. Angew Chem Int Ed 61:e202203564. https://doi.org/10.1002/anie.202203564

    Article  CAS  Google Scholar 

  20. Li X, Zhang M, Yuan B, Li L, Wang C (2016) Effects of the magnetic field on the corrosion dissolution of the 304 SS│FeCl3 system. Electrochim Acta 222:619–626. https://doi.org/10.1016/j.electacta.2016.11.017

    Article  CAS  Google Scholar 

  21. Zhang X, Wang Z, Zhou Z, Xu J (2017) Effects of magnetic field and rare earth addition on corrosion behavior of Al-3.0 wt% Mg alloy. J Alloys Compd 698:241–249. https://doi.org/10.1016/j.jallcom.2016.12.184

    Article  CAS  Google Scholar 

  22. Zhang X, Wang Z-H, Zhou Z-H, Xu J-M, Zhong Z-J, Yuan H-L (2017) Corrosion behavior of Al–3.0 wt%Mg alloy in NaCl solution under magnetic field. Rare Met 36:627–634. https://doi.org/10.1007/s12598-016-0785-5

    Article  CAS  Google Scholar 

  23. Zhang X, Wang Z, Zhou Z, Yang G, Cai X (2021) Impact of magnetic field on corrosion performance of Al–Mg alloy with different electrode potential phases. Intermetallics 129:107037. https://doi.org/10.1016/j.intermet.2020.107037

    Article  CAS  Google Scholar 

  24. Buteau S, Dahn DC, Dahn JR (2018) Explicit conversion between different equivalent circuit models for electrochemical impedance analysis of lithium-ion cells. J Electrochem Soc 165:A228–A234. https://doi.org/10.1149/2.0841802jes

    Article  CAS  Google Scholar 

  25. Westerhoff U, Kurbach K, Lienesch F, Kurrat M (2016) Analysis of lithium-ion battery models based on electrochemical impedance spectroscopy. Energy Technol 4:1620–1630. https://doi.org/10.1002/ente.201600154

    Article  CAS  Google Scholar 

  26. Pirnát A, Mészáros L, Lengyel B (1990) Study of the formation of chromate layer on zinc by impedance technique. Electrochim Acta 35:515–522. https://doi.org/10.1016/0013-4686(90)87038-4

    Article  Google Scholar 

  27. Liao CJ, Liu Q, Ma XZ, Liu JH (2019) Relationship between surface heterogeneity and electrochemical interface behavior of the TiAl alloy electrode. J Phys Chem C 123:473–484. https://doi.org/10.1021/acs.jpcc.8b09123

    Article  CAS  Google Scholar 

  28. Sun B, Ni X, Cao Y, Cao G (2017) Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb. Biosens Bioelectron 91:354–358. https://doi.org/10.1016/j.bios.2016.12.056

    Article  CAS  PubMed  Google Scholar 

  29. Esmailzadeh S, Aliofkhazraei M, Sarlak H (2018) Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: a review. Prot Met Phys Chem 54:976–989. https://doi.org/10.1134/S207020511805026X

    Article  CAS  Google Scholar 

  30. Bellezze T, Giuliani G, Roventi G (2018) Study of stainless steels corrosion in a strong acid mixture. Part 1: cyclic potentiodynamic polarization curves examined by means of an analytical method. Corros Sci 130:113–125. https://doi.org/10.1016/j.corsci.2017.10.012

    Article  CAS  Google Scholar 

  31. Wang X-Z, Ye C-P, Shi D-D, Fan H-Q, Li Q (2021) Potential polarization accelerated degradation of interfacial electrical conductivity for Au/TiN coated 316L SS bipolar plates used in polymer electrolyte membrane fuel cells. Corros Sci 189:109624. https://doi.org/10.1016/j.corsci.2021.109624

    Article  CAS  Google Scholar 

  32. Nikulov AV, Dubonos SV, Koval YI (1997) Destruction of the phase coherence by magnetic field in the fluctuation region of thin superconducting films. J Low Temp Phys 109:643–652. https://doi.org/10.1023/A:1022207216763

    Article  CAS  Google Scholar 

  33. Tacken RA, Janssen LJJ (1995) Applications of magnetoelectrolysis. J Appl Electrochem 25:1–5. https://doi.org/10.1007/BF00251257

    Article  CAS  Google Scholar 

  34. Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU (2019) Effect of pulsed magnetic field on the microstructure of TC4 titanium alloy and its mechanism. Acta Metall Sin 55:489–495. https://doi.org/10.11900/0412.1961.2018.00257

    Article  CAS  Google Scholar 

  35. Kelly EJ (1977) Magnetic field effects on electrochemical reactions occurring at metal/flowing-electrolyte interfaces. J Electrochem Soc 124:987–994. https://doi.org/10.1149/1.2133514

    Article  CAS  Google Scholar 

  36. Liu ZJ, Zhong X, Walton J, Thompson GE (2015) Anodic film growth of titanium oxide using the 3-electrode electrochemical technique: effects of oxygen evolution and morphological characterizations. J Electrochem Soc 163:E75–E82. https://doi.org/10.1149/2.0181603jes

    Article  CAS  Google Scholar 

  37. Arockiasamy A, Eliezer D, Wang PT, Horstemeyer MF, King RL (2010) Electrochemical hydrogenation and corrosion studies of Ti-48Al-2Cr-2Nb alloy in acidic solution. Anti-Corros Method M 57:280–289. https://doi.org/10.1108/00035591011087136

    Article  CAS  Google Scholar 

  38. Nasehnejad M, Gholipour Shahraki M, Nabiyouni G (2016) Atomic force microscopy study, kinetic roughening and multifractal analysis of electrodeposited silver films. Appl Surf Sci 389:735–741. https://doi.org/10.1016/j.apsusc.2016.07.134

    Article  CAS  Google Scholar 

  39. Chen X, Tang B, Liu D, Wei B, Zhu L, Liu R, Kou H, Li J (2021) Dynamic recrystallization and hot processing map of Ti-48Al-2Cr-2Nb alloy during the hot deformation. Mater Charact 179:111332. https://doi.org/10.1016/j.matchar.2021.111332

    Article  CAS  Google Scholar 

  40. Yim S, Bian H, Aoyagi K, Chiba A (2021) Effect of multi-stage heat treatment on mechanical properties and microstructure transformation of Ti–48Al–2Cr–2Nb alloy. Mater Sci Eng A 816:141321. https://doi.org/10.1016/j.msea.2021.141321

    Article  CAS  Google Scholar 

  41. Wang K, Liao C, Wang W, Xiao Y, Liu X, Zuo Y (2020) Removal of gas bubbles on an electrode using a magnet. ACS Appl Energy Mater 3:6752–6757. https://doi.org/10.1021/acsaem.0c00890

    Article  CAS  Google Scholar 

  42. Li Y-H, Chen Y-J (2021) The effect of magnetic field on the dynamics of gas bubbles in water electrolysis. Sci Rep 11:9346. https://doi.org/10.1038/s41598-021-87947-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (No. 22072040) and the National Natural Science Foundation of Hunan Province, China (No. 2020JJ4271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui Jiao Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, C.J., Zhang, X.M. & Luo, Z.J. Magnetic field effects on electrochemical dissolution behavior and surface quality of electrochemical machining of Ti-48Al-2Cr-2Nb alloy. J Appl Electrochem 53, 49–63 (2023). https://doi.org/10.1007/s10800-022-01756-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01756-0

Keywords

Navigation