Skip to main content
Log in

Applications of magnetoelectrolysis

  • Review of Applied Electrochemistry 38
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A broad overview of research on the effects of imposed magnetic fields on electrolytic processes is given. As well as modelling of mass transfer in magnetoelectrolytic cells, the effect of magnetic fields on reaction kinetics is discussed. Interactions of an imposed magnetic field with cathodic crystallization and anodic dissolution behaviour of metals are also treated. These topics are described from a practical point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α1, α2:

regression parameters (-)

B :

magnetic field flux density vector (T)

c :

concentration (mol m−3)

c :

bulk concentration (mol m−3)

D :

diffusion coefficient (m2 s−1)

d e :

diameter of rotating disc electrode (m)

E :

electric field strength vector (V m−1)

E i :

induced electric field strength vector (V m−1)

E g :

electrostatic field strength vector (V m−1)

F :

force vector (N)

F :

Faraday constant (C mol−1)

H :

magnetic field strength vector (A m−1)

i :

current density (A m−2)

i L :

limiting current density (A m−2)

i 0L :

limiting current density without applied magnetic field (A m−2)

I :

current (A)

I L :

limiting current (A)

j :

current density vector (A m−2)

K :

reaction equilibrium constant

k :

reaction velocity constant

k b :

Boltzmann constant (J K−1)

m 1, m 2 :

regression parameters (-)

n :

charge transfer number (-)

q :

charge on a particle (C)

R :

gas constant (J mol−1 K−1)

T :

temperature (K)

t :

time (s)

V :

electrostatic potential (V)

v :

particle velocity vector (m s−1)

α:

transfer coefficient (−)

γ:

velocity gradient (s−1)

ΔMS :

potential difference between metal phase and point just inside electrolyte phase (OHP)

σ:

diffusion layer thickness (m)

δ0 :

hydrodynamic boundary layer thickness without applied magnetic field (m)

ϱ:

density (kg m−3)

σ:

electrolyte conductivity (Ω−1 m−1)

μ:

magnetic permeability (V s A−1 m−1)

ν:

kinematic viscosity (m2 s−1)

ω:

vorticity

References

  1. T. Z. Fahidy, J. Appl. Electrochem. 13 (1983) 553.

    Google Scholar 

  2. J. A. Shercliff, ‘Magnetohydrodynamics’, Pergamon Press, Oxford (1965).

    Google Scholar 

  3. P. Robert, ‘Electric and mechanical properties of materials’, Artec House, Norwood U.K. (1988).

    Google Scholar 

  4. T. Z. Fahidy, Electrochim. Acta 18 (1973) 607.

    Google Scholar 

  5. R. N. O'Brien and K. S. V. Santhanam, Electrochim. Acta 32 (1987) 1679.

    Google Scholar 

  6. T. Z. Fahidy and T. S. Rutherford, J. Appl. Electrochem. 10 (1980) 481.

    Google Scholar 

  7. M. S. Quraishi and T. Z. Fahidy, Electrochim. Acta 25 (1980) 591.

    Google Scholar 

  8. M.I. Ismail and T. Z. Fahidy, Can. J. Chem. Eng. 58 (1980) 505.

    Google Scholar 

  9. T. Z. Fahidy, Chem. Eng. J. 17 (1979) 245.

    Google Scholar 

  10. Idem, ibid., 7 (1974) 21.

    Google Scholar 

  11. S. Mohanta and T. Z. Fahidy, Can. J. Chem. Eng. 50 (1972) 248.

    Google Scholar 

  12. J. P. Chopart, J. Douglade, P. Fricoteaux and A. Olivier, Electrochim. Acta 36 (1991) 459.

    Google Scholar 

  13. O. Aaboubi, J. P. Chopart, J. Douglade, A. Olivier, C. Gabrielli and B. Tribollet, J. Electrochem. Soc. 137 (1990) 1796.

    Google Scholar 

  14. S. Mohanta and T. Z. Fahidy, J. Appl. Electrochem. 8 (1978) 5.

    Google Scholar 

  15. Idem, ibid., 8 (1978) 265.

    Google Scholar 

  16. T. Z. Fahidy, Electrochim. Acta 35 (1990) 929.

    Google Scholar 

  17. S. D. Lympany, J. W. Evans and R. Moreau, Proceedings of the International Union of Theoretical Applied Mechanics, The Metals Society, London (1984) p. 15.

    Google Scholar 

  18. J. Dash, US Patent 4 666 568 (1987).

  19. K. Higashitani, K. Okuhara and S. Hatade, J. Coll. Interf. Sci. 152 (1992) 125.

    Google Scholar 

  20. Matsushita Electric Works Ltd., Japanese Patent 59 31 894 (1984).

  21. Idem, Chem. Abstr. 101 (1984) 45482.

    Google Scholar 

  22. N. J. Turro, M. F. Chow, C. J. Chung and C. H. Tung, J. Am. Chem. Soc. 105 (1983) 1572.

    Google Scholar 

  23. Y. Tanimoto, H. Udagawa and M. Itch, J. Phys. Chem. 87 (1983) 724.

    Google Scholar 

  24. N. J. Turro, M. F. Chow, C. J. Chung and B. Kracutler, J. Am. Chem. Soc. 103 (1981) 3886.

    Google Scholar 

  25. P. Lin, J. Peng, B. Hou and Y. Fu, J. Phys. Chem. 97 (1993) 1471.

    Google Scholar 

  26. G. Zadel, C. Eisenbraun, G. J. Wolff and E. Bretmaier, Angew. Chem. Int. Ed. Engl. 33 (1994) 454.

    Google Scholar 

  27. I. Ohno, Electrodep. Surf. Treat. 3 (1975) 213.

    Google Scholar 

  28. J. K. Kelly, J. Electrochem. Soc. 124 (1977) 987.

    Google Scholar 

  29. H. Zhang and G. Zhang, Chem. Abstr. 115 (1991) 217159.

    Google Scholar 

  30. C. Iwakura, M. Kitayama, T. Edamoto and H. Tamura, Electrochim. Acta 30 (1985) 747.

    Google Scholar 

  31. P. Fricoteaux, A. Olivier and R. Delmas, J. Electrochem. Soc. 139 (1992) 1096.

    Google Scholar 

  32. A. Olivier and T. Z. Fahidy, J. Appl. Electrochem. 12 (1982) 417.

    Google Scholar 

  33. M. I. Ismail and T. Z. Fahidy, KFAS Proc. Ser. 2 (Corrosion) (1984) 253.

    Google Scholar 

  34. A. Chiba, K. Ogura, T. Ogawa and T. Yamashita, Chem. Abstr. 111 (1989) 183087.

    Google Scholar 

  35. T. Yamashita and A. Chiba, Chem. Abstr. 111 (1989) 183086.

    Google Scholar 

  36. I. Mogi, G. Kodo and Y. Nakagawa, Bull. Chem. Soc. Jpn. 63 (1990) 1871.

    Google Scholar 

  37. A. Chiba, T. Niimi, H. Kitayama and T. Ogawa, Surf. Coat. Tech. 29 (1986) 347.

    Google Scholar 

  38. A. Danilyuk, V. Kurmashev and A. Matyushkov, Thin Solid Films 189 (1990) 247.

    Google Scholar 

  39. R. N. O'Brien and K. S. V. Santhanam, J. Appl. Electrochem. 20 (1990) 781.

    Google Scholar 

  40. J. Dash and W. W. King, J. Electrochem. Soc. 119 (1972) 51.

    Google Scholar 

  41. A. Chiba, K. Kitamura and T. Ogawa, Surf. Coat. Tech. 27 (1986) 83.

    Google Scholar 

  42. M. I. Ismail and T. Z. Fahidy, Metall (Berlin) 39 (1984) 118.

    Google Scholar 

  43. R. N. O'Brien and K. S. V. Santhanam, Can. J. Chem. 65 (1987) 2009.

    Google Scholar 

  44. A. Chiba and T. Ogawa, Chem. Abstr. 108 (1988) 175888.

    Google Scholar 

  45. M. Perakh, J. Electrochem. Soc. 122 (1975) 1260.

    Google Scholar 

  46. K. Nemes, Tagungsband-Kammer der Technik Suhl 83 (1987) 144.

    Google Scholar 

  47. S. Mohanta and T. Z. Fahidy, Can. J. Chem. Eng. 50 (1972) 434.

    Google Scholar 

  48. Idem, Electrochim. Acta 19 (1974) 771.

    Google Scholar 

  49. Ling Yang, J. Electrochem. Soc. 101 (1954) 456.

    Google Scholar 

  50. M. I. Ismail and T. Z. Fahidy, J. Appl. Electrochem. 11 (1981) 543.

    Google Scholar 

  51. Z. H. Gu and T. Z. Fahidy, Can. J. Chem. Eng. 70 (1992) 127.

    Google Scholar 

  52. Z. H. Gu, J. Chen and T. Z. Fahidy, Electrochim. Acta 38 (1993) 2631.

    Google Scholar 

  53. Z. H. Gu, J. Chen, A. Olivier and T. Z. Fahidy, J. Electrochem. Soc. 140 (1993) 408.

    Google Scholar 

  54. Z. H. Gu, T. Z. Fahidy and J. P. Chopart, Electrochim. Acta 37 (1992) 97.

    Google Scholar 

  55. P. Fricoteaux, Z. H. Gu and T. Z. Fahidy, J. Electroanal. Chem. 324 (1992) 161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tacken, R.A., Janssen, L.J.J. Applications of magnetoelectrolysis. J Appl Electrochem 25, 1–5 (1995). https://doi.org/10.1007/BF00251257

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00251257

Keywords

Navigation