Skip to main content
Log in

Magnetic field effects on nonlinear dynamic behavior in electro-dissolution and pulse electrochemical machining of Ti-48Al-2Cr-2Nb alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Electrochemical machining (ECM) system shows abundant dynamic phenomena and is a typical nonlinear system; the relationship between the nonlinear dynamic behavior and the surface quality of electrochemical machining is not yet fully understood. In the present work, the nonlinear dynamic behaviors of Ti-48Al-2Cr-2Nb alloy in the process of electro-dissolution and electrochemical machining with and without magnetic field were researched by phase space reconstruction, saturate correlation dimension, morphology observation, and multifractal spectrum of the machined surface. The relationship between attractor structure and surface morphology was disclosed. The results reveal that a parallel magnetic field enhances the compact degree of the attractor structure whether it is in the electro-dissolution or electrochemical machining system of Ti-48Al-2Cr-2Nb alloy and increases the number of variables in the electro-dissolution system, that is 8. The surface quality of electrochemical machining of Ti-48Al-2Cr-2Nb alloy with parallel magnetic field is improved, and the machined surface topography is smoother, simpler, and more homogeneous, which implies that parallel magnetic field facilitates the self-organization behavior in electrochemical machining of Ti-48Al-2Cr-2Nb alloy. The attractor structure of current density during electrochemical machining of Ti-48Al-2Cr-2Nb alloy can be used as an indicator for surface quality evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Yes, the data and material are available.

References

  1. Eschenazi EV, Tsega Y, Ballard N, Glass G (1995) Electrochemical oscillations, surface morphology and corrosion of selected thermal sprayed alloys. MRS Proc 407(1):365–376. https://doi.org/10.1557/PROC-407-365

    Article  Google Scholar 

  2. Hudson JL, Bassett MR (1991) Oscillatory electro-dissolution of metals. Rev Chem Eng 7(2):109–170. https://doi.org/10.1515/revce-1991-070201

    Article  Google Scholar 

  3. Fahidy TZ, Gu ZH (1995) Recent advances in the study of the dynamics of electrode processes. In: White RE, Bockris JOM, Conway BE (eds) Modern Aspects of Electrochemistry. Springer US, Boston, pp 383–409. https://doi.org/10.1007/978-1-4899-1724-9_5

  4. Luo S, Elouarzaki K, Xu ZJ (2022) Electrochemistry in magnetic fields. Angew Chem Int Ed 61(27):e202203564. https://doi.org/10.1002/anie.202203564

    Article  Google Scholar 

  5. Fan Z, Wang T, Zhong L (2004) The mechanism of improving machining accuracy of Ecm by magnetic field. J Mater Process Technol 149(1):409–413. https://doi.org/10.1016/j.jmatprotec.2003.12.025

    Article  Google Scholar 

  6. Bradley C, Samuel J (2018) Controlled phase interactions between pulsed electric fields, ultrasonic motion, and magnetic fields in an anodic dissolution cell. J Manuf Sci 140(4):041010. https://doi.org/10.1115/1.4038569

    Article  Google Scholar 

  7. Frotscher O, Schaarschmidt I, Lauwers D, Paul R, Meinke M, Steinert P, Schubert A, Schröder W, Richter M (2022) Investigation of Lorentz force–induced flow of NaNO3-electrolyte for magnetic field–assisted electrochemical machining. Int J Adv Manuf Tech 121(1):937–947. https://doi.org/10.1007/s00170-022-09349-z

    Article  Google Scholar 

  8. Bund A, Koehler S, Kuehnlein HH, Plieth W (2003) Magnetic field effects in electrochemical reactions. Electrochim Acta 49(1):147–152. https://doi.org/10.1016/j.electacta.2003.04.009

    Article  Google Scholar 

  9. Koza JA, Uhlemann M, Gebert A, Schultz L (2008) The effect of magnetic fields on the electrodeposition of cofe alloys. Electrochim Acta 53(16):5344–5353. https://doi.org/10.1016/j.electacta.2008.02.082

    Article  Google Scholar 

  10. Yu Q-K, Miyakita Y, Nakabayashi S, Baba R (2003) Magnetic field effect on electrochemical oscillations during iron dissolution. Electrochem commun 5(4):321–324. https://doi.org/10.1016/S1388-2481(03)00057-2

    Article  Google Scholar 

  11. Wang Y, Hudson JL (1991) Effect of electrode surface area on chaotic attractor dimensions. AICHE J 37(12):1833–1843. https://doi.org/10.1002/aic.690371208

    Article  Google Scholar 

  12. Hashemizadeh A, Ameri MJ (2021) Toward a mechanistic understanding of the magnetic field effect on N-80 carbon steel corrosion in aqueous Hcl solution. Anti-Corros Method Mater 68(4):293–301. https://doi.org/10.1108/ACMM-10-2020-2389

    Article  Google Scholar 

  13. Dunne P, Coey JMD (2019) Influence of a magnetic field on the electrochemical double layer. J Phys Chem C 123(39):24181–24192. https://doi.org/10.1021/acs.jpcc.9b07534

    Article  Google Scholar 

  14. Liao CJ, Zhang XM, Luo ZJ (2023) Magnetic field effects on electrochemical dissolution behavior and surface quality of electrochemical machining of Ti-48Al-2Cr-2Nb alloy. J Appl Electrochem 53(1):49–63. https://doi.org/10.1007/s10800-022-01756-0

    Article  Google Scholar 

  15. Kaur C, Bisht A, Singh P, Joshi G (2021) Eeg signal denoising using hybrid approach of variational mode decomposition and wavelets for depression. Biomed Signal Proces 65:102337. https://doi.org/10.1016/j.bspc.2020.102337

    Article  Google Scholar 

  16. Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young L-S (eds) Dynamical systems and turbulence, Warwick, 1980. Springer Berlin Heidelberg, Berlin, pp 366–381

    Chapter  Google Scholar 

  17. Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50(5):346–349. https://doi.org/10.1103/PhysRevLett.50.346

    Article  MathSciNet  MATH  Google Scholar 

  18. Grassberger P, Procaccia I (1984) Dimensions and entropies of strange attractors from a fluctuating dynamics approach. Physica D 13(1):34–54. https://doi.org/10.1016/0167-2789(84)90269-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Liao CJ, Liu Q, Ma XZ, Liu JH (2019) Relationship between surface heterogeneity and electrochemical interface behavior of the TiAl alloy electrode. J Phys Chem C 123(1):473–484. https://doi.org/10.1021/acs.jpcc.8b09123

    Article  Google Scholar 

  20. Hudson JL, Tsotsis TT (1994) Electrochemical reaction dynamics: a review. Chem Eng Sci 49(10):1493–1572. https://doi.org/10.1016/0009-2509(94)85063-1

    Article  Google Scholar 

  21. Mangiarotti S, Huc M (2019) Can the original equations of a dynamical system be retrieved from observational time series? Chaos 29(2):023133. https://doi.org/10.1063/1.5081448

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu X, Sun Y, Wang Y, Chen Y (2021) Correlation Dimension and bifurcation analysis for the planar slider-crank mechanism with multiple clearance joints. Multibody Syst Dyn 52(1):95–116. https://doi.org/10.1007/s11044-020-09769-3

    Article  MathSciNet  MATH  Google Scholar 

  23. Desroches M, Guckenheimer J, Krauskopf B, Kuehn C, Osinga HM, Wechselberger M (2012) Mixed-mode oscillations with multiple time scales. SIAM Rev 54(2):211–288. https://doi.org/10.1137/100791233

    Article  MathSciNet  MATH  Google Scholar 

  24. Modabberasl A, Sharifi M, Shahbazi F, Kameli P (2019) Multifractal analysis of Dlc thin films deposited by pulsed laser deposition. Appl Surf Sci 479:639–645. https://doi.org/10.1016/j.apsusc.2019.02.062

    Article  Google Scholar 

  25. Epstein IR, Showalter K (1996) Nonlinear chemical dynamics: oscillations, patterns, and chaos. J Phys Chem 100(31):13132–13147. https://doi.org/10.1021/jp953547m

    Article  Google Scholar 

  26. Kousaka T, Ogura Y, Shimizu K, Asahara H, Inaba N (2017) Analysis of mixed-mode oscillation-incrementing bifurcations generated in a nonautonomous constrained Bonhoeffer-Van Der Pol oscillator. Physica D 353–354:48–57. https://doi.org/10.1016/j.physd.2017.05.001

    Article  MathSciNet  Google Scholar 

  27. Shen K, Wang Z, Bi X, Ying Y, Zhang D, Jin C, Hou G, Cao H, Wu L, Zheng G, Tang Y, Tao X, Lu J (2019) Magnetic field–suppressed lithium dendrite growth for stable lithium-metal batteries. Adv Energy Mater 9(20):1900260. https://doi.org/10.1002/aenm.201900260

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 22072040) and the Natural Science Foundation of Hunan Province (grant number 2020JJ4271).

Author information

Authors and Affiliations

Authors

Contributions

Cui Jiao Liao: methodology, investigation, and the first draft. Rong Lian Lin: review of nonlinear dynamics analysis and the revised manuscript. Xian Miao Zhang: main experimental implementation. Hao Nan Sui: assistance in the electrochemical machining experiment.

Corresponding author

Correspondence to Cui Jiao Liao.

Ethics declarations

Ethics approval

The paper follows the guidelines of the Committee on Publication Ethics (COPE).

Consent participate

All authors approved the manuscript to participate.

Consent for publication

All authors approved the manuscript for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, C.J., Lin, R.L., Zhang, X.M. et al. Magnetic field effects on nonlinear dynamic behavior in electro-dissolution and pulse electrochemical machining of Ti-48Al-2Cr-2Nb alloy. Int J Adv Manuf Technol 126, 4543–4554 (2023). https://doi.org/10.1007/s00170-023-11424-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11424-y

Keywords

Navigation