Skip to main content

Advertisement

Log in

Corrosion evaluation of Ti–6Al–4V manufactured by electron beam melting in Ringer’s physiological solution: an in vitro study of the passive film

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical characteristics and semiconducting behavior of additively manufactured electron beam melted (EBM) and wrought (WR) Ti–6Al–4V (Ti-G5) are compared in Ringer’s physiological solution. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) confirmed the α + β structure of the tested materials, with two different microstructure types of “bimodal” and “basket-weave” for WR and EBM, respectively. Potentiodynamic polarization (PDP) revealed that the corrosion current density for EBM (icorr = 0.27 ± 0.06 μA cm−2) is less than the WR (icorr = 0.70 ± 0.05 μA cm−2). Moreover, potentiostatic polarization (PS) that was employed to form the passive layers at three different potentials of 300, 500, and 700 mVAg/AgCl, showed that the passive films on the EBM sample are thinner. This finding was confirmed by electrochemical impedance spectroscopy (EIS). Furthermore, through Mott–Schottky (M–S) analysis, donor densities on WR passive films were found to be ~ 1.5 times larger than EBM. Although PS and EIS confirmed that the passive layer on EBM is thinner, it provides higher corrosion resistance than WR. The passive layer on both samples were found to have n-type characteristics with a duplex structure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during the current study are available on reasonable request.

Code availability

Not applicable.

References

  1. Liu Y, Schaller RF, Asselin E (2019) Effect of Fe(III) and Cu(II) on the passivation of Ti-2 in acidic chloride solutions. J Electrochem Soc 166:C76–C82. https://doi.org/10.1149/2.1021902jes

    Article  CAS  Google Scholar 

  2. Tan X, Kok Y, Tan YJ et al (2015) Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting. Acta Mater 97:1–16. https://doi.org/10.1016/j.actamat.2015.06.036

    Article  CAS  Google Scholar 

  3. Walker JC, Murray JW, Nie M et al (2014) The effect of large-area pulsed electron beam melting on the corrosion and microstructure of a Ti6Al4V alloy. Appl Surf Sci 311:534–540. https://doi.org/10.1016/j.apsusc.2014.05.105

    Article  CAS  Google Scholar 

  4. Safdar A, Wei L-YY, Snis A, Lai Z (2012) Evaluation of microstructural development in electron beam melted Ti-6Al-4V. Mater Charact 65:8–15. https://doi.org/10.1016/j.matchar.2011.12.008

    Article  CAS  Google Scholar 

  5. Liu S, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: a review. Mater Des 164:107552. https://doi.org/10.1016/J.MATDES.2018.107552

    Article  CAS  Google Scholar 

  6. Rawal S, Brantley J, Karabudak N (2013) Additive manufacturing of Ti-6Al-4V alloy components for spacecraft applications. In: 2013 6th international conference on recent advances in space technologies (RAST). IEEE, pp 5–11

  7. Sander G, Tan J, Balan P et al (2018) Corrosion of additively manufactured alloys: a review. Corrosion 74:1318–1350. https://doi.org/10.5006/2926

    Article  CAS  Google Scholar 

  8. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928. https://doi.org/10.1007/s11665-014-0958-z

    Article  CAS  Google Scholar 

  9. Sing SL, An J, Yeong WY, Wiria FE (2016) Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res 34:369–385. https://doi.org/10.1002/jor.23075

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Liu Y, Li S, Hao Y (2018) Additive manufacturing of titanium alloys by electron beam melting: a review. Adv Eng Mater 1700842:1700842. https://doi.org/10.1002/adem.201700842

    Article  CAS  Google Scholar 

  11. Gong X, Anderson T, Chou K (2012) Review on powder-based electron beam additive manufacturing technology. In: ASME/ISCIE 2012 international symposium on flexible automation. Am Soc Mech Eng, pp 507–515

  12. Bai Y, Gai X, Li S et al (2017) Improved corrosion behaviour of electron beam melted Ti-6Al–4V alloy in phosphate buffered saline. Corros Sci 123:289–296. https://doi.org/10.1016/j.corsci.2017.05.003

    Article  CAS  Google Scholar 

  13. Jacobs JJ, Silverton C, Hallab NJ et al (1999) Metal release and excretion from cementless titanium alloy total knee replacements. Clin Orthop Relat Res 358:173–180

    Article  Google Scholar 

  14. Jacobs JJ, Skipor AK, Black J et al (1991) Release and excretion of metal in patients who have a total hip-replacement component made of titanium-base alloy. J Bone Joint Surg Am 73:1475–1486

    Article  CAS  PubMed  Google Scholar 

  15. Okazaki Y, Gotoh E (2005) Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26:11–21. https://doi.org/10.1016/J.BIOMATERIALS.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  16. Geetha M, Singh AKK, Asokamani R, Gogia AKK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  CAS  Google Scholar 

  17. Metikos-Huković M, Kwokal A, Piljac J (2003) The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials 24:3765–3775. https://doi.org/10.1016/S0142-9612(03)00252-7

    Article  CAS  PubMed  Google Scholar 

  18. Yu J, Zhao ZJ, Li LX (1993) Corrosion fatigue resistances of surgical implant stainless steels and titanium alloy. Corros Sci 35:587–597. https://doi.org/10.1016/0010-938X(93)90193-K

    Article  CAS  Google Scholar 

  19. Kim T-I, Han J-H, Lee I-S et al (1997) New titanium alloys for biomaterials: a study of mechanical and corrosion properties and cytotoxicity. Biomed Mater Eng 7:253–263. https://doi.org/10.3233/BME-1997-7404

    Article  CAS  PubMed  Google Scholar 

  20. Khan MA, Williams RL, Williams DF (1996) In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials 17:2117–2126. https://doi.org/10.1016/0142-9612(96)00029-4

    Article  CAS  PubMed  Google Scholar 

  21. Alves VA, Reis RQ, Santos ICB et al (2009) In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti–6Al–4V in simulated body fluid at 25 °C and 37 °C. Corros Sci 51:2473–2482. https://doi.org/10.1016/J.CORSCI.2009.06.035

    Article  CAS  Google Scholar 

  22. Eliaz N (2019) Corrosion of metallic biomaterials: a review. Materials (Basel). https://doi.org/10.3390/ma12030407

    Article  PubMed Central  Google Scholar 

  23. Hanawa T (1999) In vivo metallic biomaterials and surface modification. Mater Sci Eng A 267:260–266. https://doi.org/10.1016/S0921-5093(99)00101-X

    Article  Google Scholar 

  24. Roh B, Macdonald DD (2019) Passivity of titanium: part II, the defect structure of the anodic oxide film. J Solid State Electrochem 23:1967–1979. https://doi.org/10.1007/s10008-019-04254-0

    Article  CAS  Google Scholar 

  25. Abdeen DH, Palmer BR (2016) Corrosion evaluation of Ti-6Al-4V parts produced with electron beam melting machine. Rapid Prototyp J 22:322–329. https://doi.org/10.1108/RPJ-09-2014-0104

    Article  Google Scholar 

  26. Fojt J, Fousova M, Jablonska E et al (2018) Corrosion behaviour and cell interaction of Ti-6Al-4V alloy prepared by two techniques of 3D printing. Mater Sci Eng C 93:911–920. https://doi.org/10.1016/J.MSEC.2018.08.066

    Article  CAS  Google Scholar 

  27. Mah D, Pelletier MH, Lovric V, Walsh WR (2019) Corrosion of 3D-printed orthopaedic implant materials. Ann Biomed Eng 47:162–173. https://doi.org/10.1007/s10439-018-02111-1

    Article  PubMed  Google Scholar 

  28. Devika D, Dass SS, Kumar Chaudhary S (2015) Characterization and corrosion behaviour study on biocompatible Ti-6Al-4V component fabricated by electron beam melting. J Biomim Biomater Biomed Eng 22:63–75. https://doi.org/10.4028/www.scientific.net/JBBBE.22.63

    Article  CAS  Google Scholar 

  29. Chen LYY, Huang JCC, Lin CHH et al (2017) Anisotropic response of Ti-6Al-4V alloy fabricated by 3D printing selective laser melting. Mater Sci Eng A 682:389–395. https://doi.org/10.1016/j.msea.2016.11.061

    Article  CAS  Google Scholar 

  30. Dai N, Zhang LC, Zhang J et al (2016) Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution. Corros Sci 102:484–489. https://doi.org/10.1016/j.corsci.2015.10.041

    Article  CAS  Google Scholar 

  31. Gai X, Bai Y, Li J et al (2018) Electrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam melting. Corros Sci 145:80–89. https://doi.org/10.1016/J.CORSCI.2018.09.010

    Article  CAS  Google Scholar 

  32. Zhao B, Wang H, Qiao N et al (2017) Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo. Mater Sci Eng C 70:832–841. https://doi.org/10.1016/j.msec.2016.07.045

    Article  CAS  Google Scholar 

  33. Acquesta A, Monetta T (2020) As-built EBM and DMLS Ti-6Al-4V parts: topography–corrosion resistance relationship in a simulated body fluid. Metals (Basel) 10:1–15. https://doi.org/10.3390/met10081015

    Article  CAS  Google Scholar 

  34. Wu YC, Kuo CN, Chung YC et al (2019) Effects of electropolishing on mechanical properties and bio-corrosion of Ti6Al4V fabricated by electron beam melting additive manufacturing. Materials (Basel) 12:1466. https://doi.org/10.3390/ma12091466

    Article  CAS  PubMed Central  Google Scholar 

  35. Gai X, Bai Y, Li S et al (2020) In-situ monitoring of the electrochemical behavior of cellular structured biomedical Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid. Acta Biomater. https://doi.org/10.1016/j.actbio.2020.02.008

    Article  PubMed  Google Scholar 

  36. Fleck C, Eifler D (2010) Corrosion, fatigue and corrosion fatigue behaviour of metal implant materials, especially titanium alloys. Int J Fatigue 32:929–935. https://doi.org/10.1016/j.ijfatigue.2009.09.009

    Article  CAS  Google Scholar 

  37. Manivasagam G, Dhinasekaran D, Rajamanickam A (2010) Biomedical implants: corrosion and its prevention—a review. Recent Pat Corros Sci 2:40–54. https://doi.org/10.2174/1877610801002010040

    Article  CAS  Google Scholar 

  38. Bundy KJ (2008) Biomaterials and the chemical environment of the body. Joint replacement technology. Elsevier Ltd., Amsterdam, pp 56–80

    Chapter  Google Scholar 

  39. Sardana V, Burzynski J, Scuderi GR (2019) The influence of the irrigating solution on articular cartilage in arthroscopic surgery: a systematic review. J Orthop 16:158–165

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shinjo H, Nakata K, Shino K et al (2002) Effect of irrigation solutions for arthroscopic surgery on intraarticular tissue: comparison in human meniscus-derived primary cell culture between lactate Ringer’s solution and saline solution. J Orthop Res 20:1305–1310. https://doi.org/10.1016/S0736-0266(02)00062-1

    Article  PubMed  Google Scholar 

  41. Croset G, Martin G, Josserond C et al (2021) In-situ layerwise monitoring of electron beam powder bed fusion using near-infrared imaging. Addit Manuf. https://doi.org/10.1016/j.addma.2020.101767

    Article  Google Scholar 

  42. Persenot T, Burr A, Martin G et al (2019) Effect of build orientation on the fatigue properties of as-built electron beam melted Ti-6Al-4V alloy. Int J Fatigue 118:65–76. https://doi.org/10.1016/j.ijfatigue.2018.08.006

    Article  CAS  Google Scholar 

  43. ASTM International (2014) F3001–14 standard specification for additive manufacturing titanium-6 aluminum-4 vanadium ELI (extra low interstitial) with powder bed fusion. https://doi.org/10.1520/F3001-14R21

  44. Abramoff MD, Magalhães PJ, Ram SJ (2004) Image processing with imageJ. Biophotons Int 11:36–42

    Google Scholar 

  45. Zakerin N, Morshed-Behbahani K (2021) In vitro electrochemical behavior of aged Ti-6Al-4V alloy: a trial of the point defect model. Mater Today Commun 27:102327. https://doi.org/10.1016/j.mtcomm.2021.102327

    Article  CAS  Google Scholar 

  46. Wu B, Pan Z, Li S et al (2018) The anisotropic corrosion behaviour of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution. Corros Sci 137:176–183. https://doi.org/10.1016/J.CORSCI.2018.03.047

    Article  CAS  Google Scholar 

  47. Xu X, Ren X, Hou H, Luo X (2021) Effects of cryogenic and annealing treatment on microstructure and properties of friction stir welded TA15 joints. Mater Sci Eng A 804:140750. https://doi.org/10.1016/j.msea.2021.140750

    Article  CAS  Google Scholar 

  48. Yazid SA, Mohd Z, Mohamad J (2018) Effect of titanium (IV) isopropoxide molarity on the crystallinity and photocatalytic activity of titanium dioxide thin film deposited via green sol–gel route. Integr Med Res 8:1434–1439. https://doi.org/10.1016/j.jmrt.2018.10.009

    Article  CAS  Google Scholar 

  49. Biswas A, Dutta Majumdar J (2009) Surface characterization and mechanical property evaluation of thermally oxidized Ti-6Al-4V. Mater Charact 60:513–518. https://doi.org/10.1016/j.matchar.2008.12.014

    Article  CAS  Google Scholar 

  50. Chung FH (1974) Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. J Appl Crystallogr 7:519–525. https://doi.org/10.1107/S0021889874010375

    Article  Google Scholar 

  51. Xu P, Li L, Zhang C (2014) Microstructure characterization of laser welded Ti-6Al-4V fusion zones. Mater Charact 87:179–185. https://doi.org/10.1016/j.matchar.2013.11.005

    Article  CAS  Google Scholar 

  52. Kumari R, Blawert C, Majumdar JD (2016) Microstructures and properties of plasma electrolytic oxidized Ti alloy (Ti-6Al-4V) for bio-implant application. Metall Mater Trans A 47:788–800. https://doi.org/10.1007/s11661-015-3256-y

    Article  CAS  Google Scholar 

  53. Ji X, Qing Q, Ji C et al (2018) Slurry erosion wear resistance and impact-induced phase transformation of titanium alloys. Tribol Lett 66:1–7. https://doi.org/10.1007/s11249-018-1015-0

    Article  CAS  Google Scholar 

  54. Tan X, Kok Y, Toh WQ et al (2016) Revealing martensitic transformation and α/β interface evolution in electron beam melting three-dimensional-printed Ti-6Al-4V. Sci Rep 6:26039. https://doi.org/10.1038/srep26039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang Y, Bai S, Riede M et al (2020) A comprehensive study on fused filament fabrication of Ti-6Al-4V structures. Addit Manuf 34:101256. https://doi.org/10.1016/j.addma.2020.101256

    Article  CAS  Google Scholar 

  56. Dai N, Zhang L-C, Zhang J et al (2016) Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corros Sci 111:703–710. https://doi.org/10.1016/J.CORSCI.2016.06.009

    Article  CAS  Google Scholar 

  57. Attallah MM, Zabeen S, Cernik RJ, Preuss M (2009) Comparative determination of the α/β phase fraction in α+β-titanium alloys using X-ray diffraction and electron microscopy. Mater Charact 60:1248–1256. https://doi.org/10.1016/j.matchar.2009.05.006

    Article  CAS  Google Scholar 

  58. Hayes BJ (2015) Characterization of Ti-6Al-4V produced via electron beam additive manufacturing. University of North Texas, Denton

    Google Scholar 

  59. Donachie MJ (2000) Titanium: a technical guide. ASM Int. https://doi.org/10.31399/asm.tb.ttg2.9781627082693

    Article  Google Scholar 

  60. Barriobero-Vila P, Requena G, Buslaps T et al (2015) Role of element partitioning on the α-β phase transformation kinetics of a bi-modal Ti-6Al-6V-2Sn alloy during continuous heating. J Alloy Compd 626:330–339. https://doi.org/10.1016/j.jallcom.2014.11.176

    Article  CAS  Google Scholar 

  61. (2017) Grain refinement of freeform fabricated Ti-6Al-4V alloy using beam/Arc modulation Scott Mitzner. 536–555

  62. Cao S, Chu R, Zhou X et al (2018) Role of martensite decomposition in tensile properties of selective laser melted Ti-6Al-4V. J Alloy Compd 744:357–363. https://doi.org/10.1016/j.jallcom.2018.02.111

    Article  CAS  Google Scholar 

  63. Ferraro MM (2018) Quantitative determination of residual stress on additively manufactured Ti-6Al-4V. https://etd.ohiolink.edu/apexprod/rws_olink/r/1501/10?p10_etd_subid=165729&clear=10

  64. Barriobero-Vila P (2015) Phase transformation kinetics during continuous heating of α+β and metastable β titanium alloys. PhD Thesis TU Vienna Austria 2015

  65. Xie L, Liu C, Song Y et al (2020) Evaluation of microstructure variation of TC11 alloy after electroshocking treatment. J Mater Res Technol 9:2455–2466. https://doi.org/10.1016/j.jmrt.2019.12.076

    Article  CAS  Google Scholar 

  66. Bodunrin MO, Chown LH (2020) Towards the development of experimental (α + β) Ti-Al-V-Fe alloys. Mater Today Proc 38:663–668. https://doi.org/10.1016/j.matpr.2020.03.645

    Article  CAS  Google Scholar 

  67. Sabban R, Bahl S, Chatterjee K, Suwas S (2019) Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness. Acta Mater 162:239–254. https://doi.org/10.1016/j.actamat.2018.09.064

    Article  CAS  Google Scholar 

  68. Atapour M, Pilchak A, Frankel GS et al (2010) Corrosion behavior of Ti-6Al-4V with different thermomechanical treatments and microstructures. Corrosion 66:065004-065004–065009. https://doi.org/10.5006/1.3452400

    Article  Google Scholar 

  69. Xu J, Hu W, Xu S et al (2016) Electrochemical properties of a novel β-Ta2O5 nanoceramic coating exposed to simulated body solutions. ACS Biomater Sci Eng 2:73–89. https://doi.org/10.1021/acsbiomaterials.5b00384

    Article  CAS  PubMed  Google Scholar 

  70. Lin Liu L, Xu J, Lu X et al (2016) Electrochemical corrosion behavior of nanocrystalline β-Ta coating for biomedical applications. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.5b00552

    Article  PubMed  Google Scholar 

  71. Shi K, Zhang Y, Zhang J, Xie Z (2019) Electrochemical properties of niobium coating for biomedical application. Coatings 9:546. https://doi.org/10.3390/coatings9090546

    Article  CAS  Google Scholar 

  72. McCafferty E (2005) Validation of corrosion rates measured by the Tafel extrapolation method. Corros Sci 47:3202–3215. https://doi.org/10.1016/J.CORSCI.2005.05.046

    Article  CAS  Google Scholar 

  73. Pacha-Olivenza MA, Gallardo-Moreno AM, Vadillo-Rodríguez V et al (2013) Electrochemical analysis of the UV treated bactericidal Ti6Al4V surfaces. Mater Sci Eng C 33:1789–1794. https://doi.org/10.1016/j.msec.2012.12.079

    Article  CAS  Google Scholar 

  74. Liu L, Xu J, Jiang S (2016) Nanocrystalline β-Ta coating enhances the longevity and bioactivity of medical titanium alloys. Metals (Basel) 6:221. https://doi.org/10.3390/met6090221

    Article  Google Scholar 

  75. Kalisz M, Grobelny M, Zdrojek M et al (2015) The hybrid graphene multilayer system (graphene/SiN/graphene) coupled with titanium alloy (Ti6Al4V)—structural, mechanical and corrosion characterisation. Thin Solid Films 596:101–110. https://doi.org/10.1016/J.TSF.2015.07.067

    Article  CAS  Google Scholar 

  76. ASTM International G102–89 (2015) e1 standard practice for calculation of corrosion rates and related information from electrochemical measurements. https://doi.org/10.1520/G0102-89R04E01

  77. Chen J-R, Tsai W-T (2011) In situ corrosion monitoring of Ti–6Al–4V alloy in H2SO4/HCl mixed solution using electrochemical AFM. Electrochim Acta 56:1746–1751. https://doi.org/10.1016/j.electacta.2010.10.024

    Article  CAS  Google Scholar 

  78. Chen Y, Zhang J, Dai N et al (2017) Corrosion behaviour of selective laser melted Ti-TiB biocomposite in simulated body fluid. Electrochim Acta 232:89–97. https://doi.org/10.1016/j.electacta.2017.02.112

    Article  CAS  Google Scholar 

  79. Munirathinam B, Narayanan R, Neelakantan L (2016) Electrochemical and semiconducting properties of thin passive film formed on titanium in chloride medium at various pH conditions. Thin Solid Films 598:260–270. https://doi.org/10.1016/J.TSF.2015.12.025

    Article  CAS  Google Scholar 

  80. Zha L, Li H, Wang N (2019) Electrochemical characterization of anodic oxide film on TC11 alloy in sulfate solution at high temperature and high pressure. Int J Electrochem Sci 14:4546–4556. https://doi.org/10.20964/2019.05.35

    Article  CAS  Google Scholar 

  81. Ansari G, Fattah-alhosseini A (2017) On the passive and semiconducting behavior of severely deformed pure titanium in Ringer’s physiological solution at 37 °C: a trial of the point defect model. Mater Sci Eng C 75:64–71. https://doi.org/10.1016/j.msec.2017.02.046

    Article  CAS  Google Scholar 

  82. Xie F, He X, Cao S et al (2013) Influence of pore characteristics on microstructure, mechanical properties and corrosion resistance of selective laser sintered porous Ti-Mo alloys for biomedical applications. Electrochim Acta 105:121–129. https://doi.org/10.1016/j.electacta.2013.04.105

    Article  CAS  Google Scholar 

  83. Souto RM, Laz MM, Reis RL (2003) Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy. Biomaterials 24:4213–4221. https://doi.org/10.1016/S0142-9612(03)00362-4

    Article  CAS  PubMed  Google Scholar 

  84. Bai Y, Hao YL, Li SJ, Hao YQ, Yang R, Prima F (2013) Corrosion behavior of biomedical Ti–24Nb–4Zr–8Sn alloy in different simulated body solutions. Mater Sci Eng C 33:2159–2167. https://doi.org/10.1016/J.MSEC.2013.01.036

    Article  CAS  Google Scholar 

  85. Yang X, Du C, Wan H et al (2018) Influence of sulfides on the passivation behavior of titanium alloy TA2 in simulated seawater environments. Appl Surf Sci 458:198–209. https://doi.org/10.1016/J.APSUSC.2018.07.068

    Article  CAS  Google Scholar 

  86. Tamilselvi S, Raman V, Rajendran N (2006) Corrosion behaviour of Ti-6Al-7Nb and Ti-6Al-4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim Acta 52:839–846. https://doi.org/10.1016/j.electacta.2006.06.018

    Article  CAS  Google Scholar 

  87. Heakal FE, Awad KA (2011) Electrochemical corrosion and passivation behavior of titanium and its Ti-6Al-4V alloy in low and highly concentrated HBr solutions. Int J Electrochem Sci 6:6483–6502

    Google Scholar 

  88. El-Taib Heakal F, Ghoneim AA, Mogoda AS, Awad K (2011) Electrochemical behaviour of Ti-6Al-4V alloy and Ti in azide and halide solutions. Corros Sci 53:2728–2737. https://doi.org/10.1016/j.corsci.2011.05.003

    Article  CAS  Google Scholar 

  89. de Assis SL, Wolynec S, Costa I (2006) Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim Acta 51:1815–1819. https://doi.org/10.1016/J.ELECTACTA.2005.02.121

    Article  Google Scholar 

  90. Songür M, Çelikkan H, Gökmeşe F et al (2009) Electrochemical corrosion properties of metal alloys used in orthopaedic implants. J Appl Electrochem 39:1259–1265. https://doi.org/10.1007/s10800-009-9793-6

    Article  CAS  Google Scholar 

  91. Pan J, Leygraf C, Jargelius-Pettersson RFA, Lindén J (1998) Characterization of high-temperature oxide films on stainless steels by electrochemical-impedance spectroscopy. Oxid Met 50:431–455. https://doi.org/10.1023/A:1018856808917

    Article  CAS  Google Scholar 

  92. Benea L, Mardare-Danaila E, Mardare M, Celis J-P (2014) Preparation of titanium oxide and hydroxyapatite on Ti–6Al–4V alloy surface and electrochemical behaviour in bio-simulated fluid solution. Corros Sci 80:331–338. https://doi.org/10.1016/J.CORSCI.2013.11.059

    Article  CAS  Google Scholar 

  93. Cvijovi I, Bajat J, Rakin M (2016) Electrochemical behaviour of Ti-6Al-4V alloy with different microstructures in a simulated bio-environment. Mater Corros. https://doi.org/10.1002/maco.201508796

    Article  Google Scholar 

  94. Al-Mobarak NA, Al-Swayih AA, Al-Rashoud FA (2011) Corrosion behavior of Ti-6Al-7Nb alloy in biological solution for dentistry applications. Int J Electrochem Sci 6:2031–2042

    CAS  Google Scholar 

  95. Wang W, Mohammadi F, Alfantazi A (2012) Corrosion behaviour of niobium in phosphate buffered saline solutions with different concentrations of bovine serum albumin. Corros Sci 57:11–21. https://doi.org/10.1016/j.corsci.2011.12.039

    Article  CAS  Google Scholar 

  96. Xu P, Milstein TJ, Mallouk TE (2016) Flat-band potentials of molecularly thin metal oxide nanosheets. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.6b02901

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hazan J, Bamberger M (2020) Corrosion and protection (conversion coating and plasma electrolytic oxidation) of ti6al4v processed by powder bed fusion—additive manufacturing. EIS study. Springer, Cham, pp 1317–1327

    Google Scholar 

  98. Liu L, Xu J, Munroe P, Xie Z (2014) Microstructure, mechanical and electrochemical properties of in situ synthesized TiC reinforced Ti5Si3 nanocomposite coatings on Ti–6Al–4V substrates. Electrochim Acta 115:86–95. https://doi.org/10.1016/j.electacta.2013.10.138

    Article  CAS  Google Scholar 

  99. Liu J, Alfantazi A, Asselin E (2015) The effect of chloride ions on the passive films of titanium in sulfuric acids. Solid State Phenom 227:67–70. https://doi.org/10.4028/www.scientific.net/SSP.227.67

    Article  CAS  Google Scholar 

  100. Morshed-Behbahani K, Najafisayar P, Pakshir M, Shahsavari M (2018) An electrochemical study on the effect of stabilization and sensitization heat treatments on the intergranular corrosion behaviour of AISI 321H austenitic stainless steel. Corros Sci 138:28–41. https://doi.org/10.1016/j.corsci.2018.03.043

    Article  CAS  Google Scholar 

  101. Imani A, Asselin E (2021) Fluoride induced corrosion of Ti-45Nb in sulfuric acid solutions. Corros Sci 181:109232. https://doi.org/10.1016/j.corsci.2020.109232

    Article  CAS  Google Scholar 

  102. Liu JC, Zhang G, Nagao S et al (2015) Metastable pitting and its correlation with electronic properties of passive films on Sn-xZn solder alloys. Corros Sci 99:154–163. https://doi.org/10.1016/j.corsci.2015.06.036

    Article  CAS  Google Scholar 

  103. Cheng YF, Luo JL (2000) Comparison of the pitting susceptibility and semiconducting properties of the passive films on carbon steel in chromate and bicarbonate solutions. Appl Surf Sci 167:113–121. https://doi.org/10.1016/S0169-4332(00)00534-1

    Article  CAS  Google Scholar 

  104. Zhang CH, Song W, Wang YM, Xiao GZ (2017) Effect of surface strengthening on corrosion property of Ti-6Al-4V in 3.5% NaCl. Appl Mech Mater 853:473–477. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.853.473

    Article  Google Scholar 

  105. Qiu P, Gao P, Wang S et al (2020) Study on corrosion behavior of the selective laser melted NiTi alloy with superior tensile property and shape memory effect. Corros Sci 175:108891. https://doi.org/10.1016/J.CORSCI.2020.108891

    Article  CAS  Google Scholar 

  106. Chiu T, Mahmoudi M, Dai W et al (2018) Corrosion assessment of Ti-6Al-4V fabricated using laser powder-bed fusion additive manufacturing. Electrochim Acta 279:143–151. https://doi.org/10.1016/j.electacta.2018.04.189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the University of British Columbia for providing research facilities and financial support to conduct this research project. Also, Dr. Guilhem Martin from GPM2 group at the Université Grenoble Alpes in France and TIMET are gratefully acknowledged for providing the EBM and WR materials of this study, respectively. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. This document is "SAND2022-1721 J" .

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MS contributed to conceptualization, methodology, formal analysis, investigation, data curation, and writing and preparation of the original draft; AI contributed to conceptualization, methodology, and investigation; RFS contributed to resources and writing, reviewing, and editing of the manuscript; EA contributed to conceptualization, writing, reviewing, and editing of the manuscript, supervision, and funding acquisition.

Corresponding author

Correspondence to Mohammadali Shahsavari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2474 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahsavari, M., Imani, A., Schaller, R.F. et al. Corrosion evaluation of Ti–6Al–4V manufactured by electron beam melting in Ringer’s physiological solution: an in vitro study of the passive film. J Appl Electrochem 52, 1003–1019 (2022). https://doi.org/10.1007/s10800-022-01683-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01683-0

Keywords

Navigation