Skip to main content

Advertisement

Log in

Microstructures and Properties of Plasma Electrolytic Oxidized Ti Alloy (Ti-6Al-4V) for Bio-implant Application

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, plasma electrolytic oxidation (PEO) of Ti6Al4V has been performed in an electrolyte containing 20 g/L of Na2SiO3, 10 g/L of Na3PO4, 2 g/L of KOH, and 5 g/L of hydroxyapatite at an optimum constant potential of 430 V for 10 minutes. Followed by PEO treatment, surface roughness was measured using non-contact optical profilometer. A detailed characterization of microstructure, composition and phase analysis was carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopic analysis, Fourier-transform infrared, and X-ray diffraction study. The mechanical properties of the surface have been evaluated by measuring nano-hardness and wear resistance. The effect of surface modification on corrosion resistance property has also been evaluated in Hank’s solution. Finally, wettability and bioactivity test have been also performed. PEO developed a thick (150 μm) porous (35 pct) oxide film on the surface of Ti-6Al-4V consisting of anatase, rutile, and SiO2. The nano-hardness of the PEO-treated surface is increased to 8 ± 0.5 GPa as compared to 2 ± 0.4 GPa of the as-received Ti-6Al-4V. Wear and corrosion resistance were improved following oxidation. There is an improvement in wettability in terms of decrease in contact angle from 60 ± 1.5 to 45 ± 1 deg. Total surface energy and its polar component were also increased significantly on PEO-treated surface as compared to the as-received Ti6Al4V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. B.D. Ratner, A.S. Hoffman, F.J. Schoen and J.E. Lemons, Biomaterials Science: an Introduction to Materials in Medicine, Academic Press, San Diego, 1996.

    Book  Google Scholar 

  2. D.M. Brunette, P. Tengvall, M. Textor and P. Thomsen, Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Springer, New York, 2001.

    Book  Google Scholar 

  3. S. Sobieszczyk, Adv. Mater. Sci., 2010, vol. 23 pp.29-41.

    Google Scholar 

  4. R. R. Wang, G. E. Welsch and O. Monteiro, J. Biomed. Mater. Res., 1999, vol. 46, pp. 262–270.

    Article  Google Scholar 

  5. S.H. Oh, R.R. Finones, C. Daraio, L.H. Chen and S. Jin, Biomaterials, 2005,vol. 26,pp. 4938-4943.

    Article  Google Scholar 

  6. S.H. Oh and S. Jin, Mater. Sci. Eng. C, 2006, vol.26, pp. 1301-1306.

    Article  Google Scholar 

  7. D. Wei, Y. Zhou, C. Yang, Ceram. Int., 2009, vol.35, pp.2545-2554.

    Article  Google Scholar 

  8. J. Sun, Y. Han and X. Huang, Surf. Coat. Technol., 2007, vol. 201, pp.5655-5658.

    Article  Google Scholar 

  9. D. Wei, Y. Zhou, D. Jia and J. Wang, Surf. Coat. Technol., 2007, vol. 201, pp.8723-8729.

    Article  Google Scholar 

  10. T. Maiyalagan, B. Viswanathan and U.V. Varadaraju, Bull. Mater. Sci., 2006, vol.29, pp.705-708.

    Google Scholar 

  11. F. Borgioli, E. Galvanetto, F. Iozzelli and G. Pradelli, Mater. Lett., 2005, vol. 59,pp.2159-2162.

    Article  Google Scholar 

  12. S. Kumar, T. S. N. S. Narayanan, S. G. S. Raman and S. K. Seshadri, Mater. Sci. Eng. C, 2009, vol. 29, pp. 1942-1949.

    Article  Google Scholar 

  13. A.F. Yetim, Surf. Coat.Technol., 2010,vol.205, pp.1757–1763.

    Article  Google Scholar 

  14. Z. Liu, X. Liu, U. Donatus, G.E. Thompson and P. Skeldon, Int. J. Electrochem. Sci., 2014, vol.9, pp.3558 -3573.

    Google Scholar 

  15. A.L. Yerokhin, Surf. Coat. Technol., 2005,vol.199, pp.119-120.

    Article  Google Scholar 

  16. P. Huang, K.W. Xu and Y. Han, Mater. Lett., 2005, vol.59,pp.185– 189.

    Article  Google Scholar 

  17. Y. Wang, T. Lei, B. Jiang and L. Guo, Appl. Surf. Sci., 2004, vol.233, pp.258–267.

    Article  Google Scholar 

  18. A.L. Yerokhin, X. Nie, A. Leyland and A. Matthews, Surf. Coat. Technol., 2000, vol.130, pp.195-206.

    Article  Google Scholar 

  19. Y. Han, S.H. Hong, and K.W. Xu, Surf. Coat. Technol., 2002, vol.154, pp. 314–318.

    Article  Google Scholar 

  20. M. Iwasaki, K. Shimada, K. Kudo, Y. Tamagawa, H. Horikawa, Mater. Trans., 2011,vol.52,pp.1410-1417.

    Article  Google Scholar 

  21. R.H.U. Khan, A.L. Yerokhin, and A. Matthews, Philos. Mag., 2008, vol. 88, pp.795–807.

    Article  Google Scholar 

  22. S.V. Gnedenkov, S.L. Sinebryukhov, A.V. Puz, A.S. Gnedenkov, I.E.Vyaliy, D.V. Mashtalyar and V.S. Egorkin, Solid State Phenom.,2014,vol.213,pp.149-153.

    Article  Google Scholar 

  23. Y.T. Sul, C. Johansson, E. Byon, and T. Albrektsson: Biomaterials, 2005, vol. 26, pp. 6720-6730.

    Article  Google Scholar 

  24. Y.T. Sul, J. Jönsson, G.S. Yoon, and C. Johansson: Clinical Oral Implants Research, 2009, vol. 20, pp. 1146-1155.

    Article  Google Scholar 

  25. B.S. Kang, Y.T. Sul, S.J. Oh, H.J. Lee, and T. Albrektsson: Acta Biomaterialia, 2009, vol. 5, pp. 2222-2229.

    Article  Google Scholar 

  26. T. Jarmar, A. Palmquist, R. Brånemark, L. Hermansson, H. Engqvist, and P. Thomsen: Clinical Implant Dentistry and Related Research, 2008, vol. 10, pp. 11-22.

    Article  Google Scholar 

  27. E. Matykina, R. Arrabal, M. Mohedano, A. Pardo, M. C. Merino, and E. Rivero: Journal of Materials Science: Materials in Medicine, 2013, vol. 24, pp. 37-51.

    Google Scholar 

  28. K. J. Stout and L. Blunt, Three-Dimensional Surface Topography, 2nd ed., Penton Press., London, 2000, pp. 22.

    Google Scholar 

  29. H. Chung, J. Appl. Crystallogr.,1974, vol.7,pp.513–9.

    Google Scholar 

  30. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd ed., Prentice Hall, New Delhi, 2001.

    Google Scholar 

  31. W.C. Oliver and G.M. Pharr, J. Mater. Res., 1992, vol.7, pp. 1564-1583.

    Article  Google Scholar 

  32. W. Adamson, Physical Chemistry of Surface, 5th ed., John Wiley, New York, 1990.

    Google Scholar 

  33. N. J. Hallab, K. J. Bundy, K. O’Connor, R. L. Moses and J. J. Jacobs, Tissue Engg.,2001,vol.7,pp.55-71.

    Article  Google Scholar 

  34. J.M. Schakenraad, H.J. Busscher, C.R. Wildevuur and J. Arends, J. Biomed. Mater. Res., 1986, vol. 20,pp.773–784.

    Article  Google Scholar 

  35. Q. Li, J. Liang, and Q. Wang: Plasma Electrolytic Oxidation Coatings on Lightweight Metals, in: Modern Surface Engineering Treatments, Mahmood Aliofkhazraei (Eds.), InTech, 2013.

    Google Scholar 

  36. S. Ivanov, S. Zhuravsky, G. Yukina, V. Tomson, D. Korolev, and M. Galagudza, Materials, 2012,vol. 5,pp.1873-1889.

    Article  Google Scholar 

  37. S.J. Ding, Y.M. Su, C.P. Ju, J.H.C. Lin, Biomaterials,2001,vol. 22,pp.833-845.

    Article  Google Scholar 

  38. Y. Abe, N. Li, K. Nishimoto, M. Kawamura, K.H Kim, T. Suzuki, Formation of hydrated yttrium oxide and titanium oxide thin films by reactive sputtering in H2O atmosphere and their electrical properties, J. Appl. Phys.,2014,vol.53 No.6.

    Article  Google Scholar 

  39. A. Barry, Paint & Coatings Industry,2006, vol. 22 Issue 10, pp.114.

    Google Scholar 

  40. J. H. Lee, J.W. Park, H. B. Lee, Biomaterials, 1991, vol.12 no.5,pp.443-448.

    Article  Google Scholar 

  41. M. Nakamura and L. Sirghi, T. Aoki, Y. Hatanaka, Surf. Sci., 2002, vol.507–510, pp. 778-782.

    Article  Google Scholar 

  42. T. Bezrodna and G. Puchkovska, V. Shymanovska, J. Baran and H. Ratajczak, J. Mol. Struct., 2004, vol.700,pp.175-181.

    Article  Google Scholar 

  43. N.T. Mcdevitt and W.L. Baun, Spectrochim. Acta, 1964, vol.20, pp.799-808.

    Article  Google Scholar 

  44. R. Palanivel and G. Velraj, Indian J. Pure Appl. Phys.,2007,vol.45,pp. 501-508.

    Google Scholar 

  45. D.W. Matson, S.K. Sharma and J.A. Philpotts,J. Non-Cryst. Solids, 1983, vol.58, pp. 323-352.

    Article  Google Scholar 

  46. S.W.K. Kweha, K.A. Khora and P. Cheang, Biomaterials, 2002, vol.23, pp.775–785.

    Article  Google Scholar 

  47. R.W. Rice, Microstructure dependence of mechanical behaviour of ceramics, in: Treatise on Materials Science and Technology II, R.C. MaCrone (Ed.), Academic Press, New York, 1977, p. 200.

    Google Scholar 

  48. Y.M. Wang, B.L. Jiang, T.Q. Lei and L.X. Guo, Surf. Coat. Technol.,, 2006, vol.201,pp. 82–89.

    Article  Google Scholar 

  49. A. Alsaran and Ç. Albayrak, Surf. Eng.,2011,vol.27 Issue 3,pp. 205-210.

    Article  Google Scholar 

  50. W. Yu, J. Qiu, L. Xu and F. Zhang, Biomed Mater., 2009, 4 (2009) 230-237.

    Google Scholar 

  51. X. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. G. Gerstorfer, Biomaterials,2004,vol.25,pp.4087.

    Article  Google Scholar 

  52. D. S. R. Krishna, and Y.Su, Appl. Surf. Sci., 2005, vol. 252, pp. 1107–1116.

    Article  Google Scholar 

  53. A. Biswas, PVS. Srikant, I. Manna, UK. Chatterjee, and JD. Majumdar. Surf. Engg., 2008, vol. 24, pp. 442–446.

    Article  Google Scholar 

  54. A. Biswas and J. D Majumdar, Mater. Charact., 2009, vol.60,pp.513-518.

    Article  Google Scholar 

  55. D. Krupa, J. Baszkiewicz, J. Zdunek, J. Smolik, Z. Słomka, and J. W. Sobczak,, Surf. Coat. Tech., 2010, vol. 205, pp.1743–1749.

    Article  Google Scholar 

Download references

Acknowledgments

Partial financial supports from Alexander von Humboldt Foundation, Bonn (to J. Dutta Majumdar), Department of Biotechnology, N. Delhi (to J. Dutta Majumdar), and Ministry of Human Resource Development, N. Delhi (to Renu Kumari) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dutta Majumdar.

Additional information

Manuscript submitted August 21, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, R., Blawert, C. & Majumdar, J.D. Microstructures and Properties of Plasma Electrolytic Oxidized Ti Alloy (Ti-6Al-4V) for Bio-implant Application. Metall Mater Trans A 47, 788–800 (2016). https://doi.org/10.1007/s11661-015-3256-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3256-y

Keywords

Navigation