Skip to main content
Log in

Investigation on the tribocorrosion and electrochemical corrosion behaviour of AA2014/Al2O3 nanocomposites fabricated through ultrasonication coupled stir-squeeze casting method

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, the tribocorrosion and electrochemical corrosion behaviour of AA2014/Al2O3 (1–4 wt%) nanocomposites were investigated. An unreinforced 2014 alloy and the proposed nanocomposites were prepared through ultrasonication coupled stir-squeeze casting method followed by solutionizing at 510 °C for 2 h and ageing at 165 °C for 16 h. Studies on the dispersion of nanoparticles, intermetallic phase formation, porosity, and hardness were carried out prior to the corrosion analysis. Tribocorrosion test was performed in a linear reciprocating tribometer using 3.5 wt% NaCl solution as electrolyte under potentiodynamic polarization condition for an exposure period of 600, 900, 1200, and 1500 s. A similar testing condition was applied while performing the electrochemical test of materials in a cylindrical beaker. The experimental results indicated a uniform distribution of nanoparticles and the formation of β-CuAl2 phase in the nanocomposites. A maximum hardness of 150 HV was obtained for the nanocomposite reinforced with 2 wt% of Al2O3. Tribocorrosion test results indicated that AA2014/3 wt% Al2O3 nanocomposite exhibit the lowest potential of − 0.62 to − 0.68 V with a friction coefficient of 0.15 µ and a minimum current density of 4.889 × 10–4 at 900 s. The same nanocomposite reduced the removal of metal ions with the lowest potential range of − 0.4 to − 0.5 V and decreased current density of 1.521 × 10–5 at 1200 s. during the electrochemical test. Alumina hydroxide films and secondary phases caused a superior corrosion resistance at higher exposure times. The microstructural analysis of the corroded surfaces showed pitting corrosion, formation of pits and cracks.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Zhao Q, Guo C, Niu K et al (2021) Long-term corrosion behavior of the 7A85 aluminum alloy in an industrial-marine atmospheric environment. J Mater Res Technol 12:1350–1359. https://doi.org/10.1016/j.jmrt.2021.03.085

    Article  CAS  Google Scholar 

  2. Kannan C, Ramanujam R (2017) Comparative study on the mechanical and microstructural characterisation of AA 7075 nano and hybrid nanocomposites produced by stir and squeeze casting. J Adv Res 8:309–319. https://doi.org/10.1016/j.jare.2017.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. André NM, Bouali A, Maawad E et al (2019) Corrosion behavior of metal–composite hybrid joints: influence of precipitation state and bonding zones. Corros Sci 158:108075. https://doi.org/10.1016/j.corsci.2019.07.002

    Article  CAS  Google Scholar 

  4. Usman BJ, Scenini F, Curioni M (2020) The effect of exposure conditions on performance evaluation of post-treated anodic oxides on an aerospace aluminium alloy: comparison between salt spray and immersion testing. Surf Coat Technol 399:126157. https://doi.org/10.1016/j.surfcoat.2020.126157

    Article  CAS  Google Scholar 

  5. Ramkumar KR, Sivasankaran S, Al-Mufadi FA et al (2019) Investigations on microstructure, mechanical, and tribological behaviour of AA 7075–x wt % TiC composites for aerospace applications. Arch Civ Mech Eng 19:428–438. https://doi.org/10.1016/j.acme.2018.12.003

    Article  Google Scholar 

  6. Khandelwal A, Mani K, Srivastava N et al (2017) Mechanical behavior of AZ31/Al2O3 magnesium alloy nanocomposites prepared using ultrasound assisted stir casting. Compos Part B Eng 123:64–73. https://doi.org/10.1016/j.compositesb.2017.05.007

    Article  CAS  Google Scholar 

  7. Dezfuli SM, Sabzi M (2018) Effect of yttria and benzotriazole doping on wear/corrosion responses of alumina-based nanostructured films. Ceram Int 44:20245–20258. https://doi.org/10.1016/j.ceramint.2018.07.313

    Article  CAS  Google Scholar 

  8. Raja S, Muhamad MR, Jamaludin MF, Yusof F (2020) A review on nanomaterials reinforcement in friction stir welding. J Mater Res Technol 9:16459–16487. https://doi.org/10.1016/j.jmrt.2020.11.072

    Article  CAS  Google Scholar 

  9. Maj J, Basista M, Węglewski W et al (2018) Effect of microstructure on mechanical properties and residual stresses in interpenetrating aluminum-alumina composites fabricated by squeeze casting. Mater Sci Eng A 715:154–162. https://doi.org/10.1016/j.msea.2017.12.091

    Article  CAS  Google Scholar 

  10. Bin SB, Xing SM, Tian LM et al (2013) Influence of technical parameters on strength and ductility of AlSi9Cu3 alloys in squeeze casting. Trans Nonferrous Met Soc China (English Ed) 23:977–982. https://doi.org/10.1016/S1003-6326(13)62555-8

    Article  CAS  Google Scholar 

  11. Loganathan P, Gnanavelbabu A, Rajkumar K (2021) Influence of ZrB2/hBN particles on the wear behaviour of AA7075 composites fabricated through stir followed by squeeze cast technique. Proc Inst Mech Eng Part J J Eng Tribol 235:149–160. https://doi.org/10.1177/1350650120929501

    Article  CAS  Google Scholar 

  12. Jahangiri A, Marashi SPH, Mohammadaliha M, Ashofte V (2017) The effect of pressure and pouring temperature on the porosity, microstructure, hardness and yield stress of AA2024 aluminum alloy during the squeeze casting process. J Mater Process Technol 245:1–6. https://doi.org/10.1016/j.jmatprotec.2017.02.005

    Article  CAS  Google Scholar 

  13. Lu T, Chen W, Li B et al (2019) Influence mechanisms of Zr and Fe particle additions on the microstructure and mechanical behavior of squeeze-cast 7075Al hybrid composites. J Alloys Compd 798:587–596. https://doi.org/10.1016/j.jallcom.2019.05.301

    Article  CAS  Google Scholar 

  14. Gnanavelbabu A, Rajkumar K (2020) Experimental characterization of dimensional and surface alternation of straight and angular cutting on self-lubricating composite: a wire EDM approach. Arab J Sci Eng 45:5859–5872. https://doi.org/10.1007/s13369-020-04596-2

    Article  CAS  Google Scholar 

  15. Yuan D, Yang X, Wu S et al (2019) Development of high strength and toughness nano-SiCp/A356 composites with ultrasonic vibration and squeeze casting. J Mater Process Technol 269:1–9. https://doi.org/10.1016/j.jmatprotec.2019.01.021

    Article  CAS  Google Scholar 

  16. Idrisi AH, Mourad AHI (2019) Conventional stir casting versus ultrasonic assisted stir casting process: mechanical and physical characteristics of AMCs. J Alloys Compd 805:502–508. https://doi.org/10.1016/j.jallcom.2019.07.076

    Article  CAS  Google Scholar 

  17. Xu Z, Ma L, Yan J et al (2014) Solidification microstructure of SiC particulate reinforced ZneAl composites under ultrasonic exposure. Mater Chem Phys 148:824–832. https://doi.org/10.1016/j.matchemphys.2014.08.057

    Article  CAS  Google Scholar 

  18. Ayyanar S, Gnanavelbabu A, Rajkumar K, Loganathan P (2020) Studies on high temperature wear and friction behaviour of AA6061/B4C/hBN hybrid composites. Met Mater Int. https://doi.org/10.1007/s12540-020-00710-z

    Article  Google Scholar 

  19. Zhao J, Su H, Wu C (2020) The effect of ultrasonic vibration on stress-strain relations during compression tests of aluminum alloys. J Mater Res Technol 9:14895–14906. https://doi.org/10.1016/j.jmrt.2020.10.094

    Article  CAS  Google Scholar 

  20. Gnanavelbabu A, Sunu Surendran KT, Kumar S (2019) Influence of ultrasonication power on grain refinement, mechanical properties and wear behaviour of AZ91D/nano-Al2O3 composites. Mater Res Express 7:016544. https://doi.org/10.1088/2053-1591/ab64d7

    Article  CAS  Google Scholar 

  21. Deng X, Huang Z, Wang W, Davé RN (2016) Investigation of nanoparticle agglomerates properties using Monte Carlo simulations. Adv Powder Technol 27:1971–1979. https://doi.org/10.1016/j.apt.2016.06.029

    Article  CAS  Google Scholar 

  22. Gnanavelbabu A, Surendran KTS, Loganathan P, Vinothkumar E (2021) Effect of ageing temperature on the corrosion behaviour of UHTC particulates reinforced magnesium composites fabricated through ultrasonic assisted squeeze casting process. J Alloys Compd 856:158173856. https://doi.org/10.1016/j.jallcom.2020.158173

    Article  CAS  Google Scholar 

  23. Sharma S, Nanda T, Pandey OP (2019) Investigation of T4 and T6 heat treatment on the wear properties of sillimanite reinforced LM30 aluminium alloy composites. Wear 426–427:27–36. https://doi.org/10.1016/j.wear.2018.12.065

    Article  CAS  Google Scholar 

  24. Ananda Murthy HC, Bheema Raju V, Shivakumara C (2013) Effect of TiN particulate reinforcement on corrosive behaviour of aluminium 6061 composites in chloride medium. Bull Mater Sci 36:1057–1066. https://doi.org/10.1007/s12034-013-0560-2

    Article  CAS  Google Scholar 

  25. Fang Y, Chen N, Du G et al (2019) Effect of Y2O3-stabilized ZrO2 whiskers on the microstructure, mechanical and wear resistance properties of Al2O3 based ceramic composites. Ceram Int 45:16504–16511. https://doi.org/10.1016/j.ceramint.2019.05.184

    Article  CAS  Google Scholar 

  26. Sundar A, Qi L (2021) Stability of native point defects in α-Al2O3 under aqueous electrochemical conditions. J Appl Electrochem 51:639–651. https://doi.org/10.1007/s10800-020-01526-w

    Article  CAS  Google Scholar 

  27. Jun C, Bingli P, Quanan L (2020) Tribocorrosion behavior of LY12 aluminum alloy in artificial seawater solution tribocorrosion behavior of LY12 aluminum alloy in artificial seawater solution. Tribol Trans 63:1085–1094. https://doi.org/10.1080/10402004.2020.1794091

    Article  CAS  Google Scholar 

  28. Cheng J, Ge Y, Wang B et al (2020) Microstructure and tribocorrosion behavior of Al2O3 / Al composite coatings: role of Al2O3 addition. J Therm Spray Technol 29:1741–1751. https://doi.org/10.1007/s11666-020-01062-1

    Article  CAS  Google Scholar 

  29. Huttunen-Saarivirta E, Isotahdon E, Metsäjoki J et al (2018) Tribocorrosion behaviour of aluminium bronze in 3.5 wt % NaCl solution. Corros Sci 144:207–223. https://doi.org/10.1016/j.corsci.2018.08.058

    Article  CAS  Google Scholar 

  30. Abolusoro OP, Akinlabi ET (2020) Tribocorrosion measurements and behaviour in aluminium alloys: an overview. J Bio-Tribo-Corros 6:102. https://doi.org/10.1007/s40735-020-00393-4

    Article  Google Scholar 

  31. Sinhmar S, Dwivedi DK (2018) A study on corrosion behavior of friction stir welded and tungsten inert gas welded AA2014 aluminium alloy. Corros Sci 133:25–35. https://doi.org/10.1016/j.corsci.2018.01.012

    Article  CAS  Google Scholar 

  32. Gharavi F, Matori KA, Yunus R et al (2016) Corrosion evaluation of friction stir welded lap joints of AA6061-T6 aluminum alloy. Trans Nonferrous Met Soc China 26:684–696. https://doi.org/10.1016/S1003-6326(16)64159-6

    Article  CAS  Google Scholar 

  33. Roseline S, Paramasivam V (2019) Corrosion behaviour of heat treated aluminium metal matrix composites reinforced with fused zirconia alumina 40. J Alloys Compd 799:205–215. https://doi.org/10.1016/j.jallcom.2019.05.185

    Article  CAS  Google Scholar 

  34. Sundaram PA (2016) Corrosion behavior of novel Al-Al2O3 composites in aerated 3.5% chloride solution. J Mater Eng Perform 26:69–75. https://doi.org/10.1007/s11665-016-2420-x

    Article  CAS  Google Scholar 

  35. Ugender S, Kumar A, Reddy AS (2014) Experimental Investigation of tool geometry on mechanical properties of friction stir welding of AA 2014 aluminium alloy. Procedia Mater Sci 5:824–831. https://doi.org/10.1016/j.mspro.2014.07.334

    Article  CAS  Google Scholar 

  36. Zhang Y, Yi Y, Huang S, He H (2017) Influence of temperature-dependent properties of aluminum alloy on evolution of plastic strain and residual stress during quenching process. Metals (Basel) 7:228. https://doi.org/10.3390/met7060228

    Article  CAS  Google Scholar 

  37. Xu J, Chen G, Zhang Z et al (2021) Effect of Al-3wt %Al2O3 master alloy fabricated by calcined kaolin on grain refinement and mechanical properties of A356 alloy. J Alloys Compd 862:158512. https://doi.org/10.1016/j.jallcom.2020.158512

    Article  CAS  Google Scholar 

  38. Ji Y, Fu R, Lv J et al (2020) Enhanced bonding strength of Al2O3 / AlN ceramics joined via glass frit with gradient thermal expansion coefficient. Ceram Int 46:12806–12811. https://doi.org/10.1016/j.ceramint.2020.02.050

    Article  CAS  Google Scholar 

  39. Hima Gireesh C, Durga Prasad K, Ramji K (2018) Experimental investigation on mechanical properties of an al6061 hybrid metal matrix composite. J Compos Sci 2:49. https://doi.org/10.3390/jcs2030049

    Article  CAS  Google Scholar 

  40. Ma P, Jia Y, Gokuldoss PK et al (2017) Effect of Al2O3 nanoparticles as reinforcement on the tensile behavior of Al-12Si composites. Metals (Basel) 7:1–11. https://doi.org/10.3390/met7090359

    Article  CAS  Google Scholar 

  41. Reddy C (2011) Evaluation of mechanical behavior of Al-Alloy / Al2O3 metal matrix composites with respect to their constituents using taguchi technique. I-manager’s J Mech Eng 4:26–32. https://doi.org/10.26634/jme.1.2.1405

    Article  Google Scholar 

  42. Liew KM, Kai MF, Zhang LW (2016) Carbon nanotube reinforced cementitious composites: an overview. Compos Part A Appl Sci Manuf 91:301–323. https://doi.org/10.1016/j.compositesa.2016.10.020

    Article  CAS  Google Scholar 

  43. Silva JI, Alves AC, Pinto AM, Toptan F (2017) Corrosion and tribocorrosion behavior of Ti−TiB−TiNx in-situ hybrid composite synthesized by reactive hot pressing. J Mech Behav Biomed Mater 74:195–203. https://doi.org/10.1016/j.jmbbm.2017.05.041

    Article  CAS  PubMed  Google Scholar 

  44. Heidarpour A, Mousavi ZS, Karimi S, Hosseini SM (2021) On the corrosion behavior and microstructural characterization of Al2024 and Al2024/Ti2SC MAX phase surface composite through friction stir processings. J Appl Electrochem. https://doi.org/10.1007/s10800-021-01567-9

    Article  Google Scholar 

  45. Shrivastava V, Singh P, Kumar G (2021) Synergistic effect of heat treatment and reinforcement content on the microstructure and corrosion behavior of Al-7075 alloy based nanocomposites. J Alloys Compd 857:157590. https://doi.org/10.1016/j.jallcom.2020.157590

    Article  CAS  Google Scholar 

  46. Umoren SA, Li Y, Wang FH (2011) Effect of aluminium microstructure on corrosion and inhibiting effect of polyacrylic acid in H2SO4 solution. J Appl Electrochem 41:307–315. https://doi.org/10.1007/s10800-010-0240-5

    Article  CAS  Google Scholar 

  47. Bonfils-Lahovary ML, Laffont L, Blanc C (2017) Characterization of intergranular corrosion defects in a 2024 T351 aluminium alloy. Corros Sci 119:60–67. https://doi.org/10.1016/j.corsci.2017.02.020

    Article  CAS  Google Scholar 

  48. Safiuddin M (2017) Concrete damage in field conditions and protective sealer and coating systems. Coatings 7:90. https://doi.org/10.3390/coatings7070090

    Article  CAS  Google Scholar 

  49. Abdel-Gawad SA, Osman WM, Fekry AM (2019) Characterization and corrosion behavior of anodized aluminum alloys for military industries applications in artificial seawater. Surf Interfaces 14:314–323. https://doi.org/10.1016/j.surfin.2018.08.001

    Article  CAS  Google Scholar 

  50. Machkova MS, Kozhukharov VS (2014) Influence of buffering on the spontaneous deposition of cerium conversion coatings for corrosion protection of AA2024-T3 aluminum alloy. J Appl Electrochem 44:1093–1105. https://doi.org/10.1007/s10800-014-0718-7

    Article  CAS  Google Scholar 

  51. Rodrı P (2014) The electrochemical characteristics of commercial aluminium alloy electrodes for Al / air batteries. J Appl Electrochem 44:1371–1380. https://doi.org/10.1007/s10800-014-0751-6

    Article  CAS  Google Scholar 

  52. Luo C, Albu SP, Zhou X et al (2016) Continuous and discontinuous localized corrosion of a 2xxx aluminium-copper-lithium alloy in sodium chloride solution. J Alloys Compd 658:61–70. https://doi.org/10.1016/j.jallcom.2015.10.185

    Article  CAS  Google Scholar 

  53. Jayaraj RK, Malarvizhi S, Balasubramanian V (2017) Electrochemical corrosion behaviour of stir zone of friction stir welded dissimilar joints of AA6061 aluminium–AZ31B magnesium alloys. Trans Nonferrous Met Soc China (English Ed) 27:2181–2192. https://doi.org/10.1016/S1003-6326(17)60244-9

    Article  CAS  Google Scholar 

  54. Liu S, Wang B (2020) Electrochemical corrosion behavior of a magnesium calcium alloy in simulated body fluids with different glucose concentrations. J Mater Res Technol 9:6612–6619. https://doi.org/10.1016/j.jmrt.2020.04.052

    Article  CAS  Google Scholar 

  55. Zhang Z, Liu F, Han E et al (2019) Effects of Al2O3 on the microstructures and corrosion behavior of low- pressure cold gas sprayed Al 2024-Al2O3 composite coatings on AA 2024–T3 substrate. Surf Coat Technol 370:53–68. https://doi.org/10.1016/j.surfcoat.2019.04.082

    Article  CAS  Google Scholar 

  56. Thirumalaikumarasamy D, Shanmugam K, Balasubramanian V (2014) Comparison of the corrosion behaviour of AZ31B magnesium alloy under immersion test and potentiodynamic polarization test in NaCl solution. J Magnes Alloys 2:36–49. https://doi.org/10.1016/j.jma.2014.01.004

    Article  CAS  Google Scholar 

  57. Arthanari S, Nallaiyan R, Kwang Seon S (2017) Electrochemical corrosion behavior of acid treated strip cast AM50 and AZX310 magnesium alloys in 3.5 wt% NaCl solution. J Magnes Alloys 5:277–285. https://doi.org/10.1016/j.jma.2017.08.001

    Article  CAS  Google Scholar 

  58. Faegh E, Shrestha S, Zhao X, Mustain WE (2019) In—depth structural understanding of zinc oxide addition to alkaline electrolytes to protect aluminum against corrosion and gassing. J Appl Electrochem 49:895–907. https://doi.org/10.1007/s10800-019-01330-1

    Article  CAS  Google Scholar 

  59. Smoljko I, Gudic S, Kuzmanic N et al (2012) Electrochemical properties of aluminium anodes for Al/air batteries with aqueous sodium chloride electrolyte. J Appl Electrochem 42:969–977. https://doi.org/10.1007/s10800-012-0465-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their genuine gratitude to the Science and Engineering Research Board (SERB), Govt. of India, for funding this research work through the Grant Number: EEQ/2017/000382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gnanavelbabu.

Ethics declarations

Conflict of interest

The authors proclaim that they have no financial supremacy or personal relationship that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnanavelbabu, A., Amul, X.J. & Surendran, K.T.S. Investigation on the tribocorrosion and electrochemical corrosion behaviour of AA2014/Al2O3 nanocomposites fabricated through ultrasonication coupled stir-squeeze casting method. J Appl Electrochem 52, 765–791 (2022). https://doi.org/10.1007/s10800-022-01666-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01666-1

Keywords

Navigation