Skip to main content
Log in

Influence of buffering on the spontaneous deposition of cerium conversion coatings for corrosion protection of AA2024-T3 aluminum alloy

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Cerium-based conversion coatings were spontaneously deposited on AA2024-T3 alloy at 60 °C using buffered and non-buffered CeCl3 solutions in the presence of H2O2. Malonic acid or amino-acetic acid (glycine) was used as buffering additives. The deposition process and the properties of the coatings obtained were followed by linear voltammetry and electrochemical impedance spectroscopy. The surface morphology was studied by scanning electron microscopy. It was found that buffering complicates the conversion process and hampers the deposition rate. The coatings deposited using buffered baths had lower barrier ability and corrosion durability in 3.5 % NaCl corrosive medium compared to those deposited in the absence of buffers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Starke EA, Staley JT (1996) Application of modern aluminum alloys to aircraft. Prog Aerosp Sci 32:131–172

    Article  Google Scholar 

  2. Tottem GE, Meckenzie DS (2003) Handbook of aluminium. Marcel Dekker, NY

    Book  Google Scholar 

  3. Foley RT (1986) Localized corrosion of aluminum alloys-a review. Corros Sci 42:277–288

    Article  CAS  Google Scholar 

  4. Guillaumin V, Mnankovski G (1999) Localized corrosion of 2024 T351 aluminium alloy in chloride media. Corros Sci 41:421–438

    Article  CAS  Google Scholar 

  5. Fonseca ITE, Lima N, Rodriguez JA, Perreira MIS (2002) Passivity breakldown of Al 2024–T3 alloy in chloride solutions: a test of the point defect model. Electrochem Commun 4:252–357

    Article  Google Scholar 

  6. Groshart EA (1984) Design and finish requirements of high strength steels. Met Finish 82:69–70

    CAS  Google Scholar 

  7. Kending MW, Davenport AJ, Issacs HS (1993) The mechanism of corrosion inhibition by chromate conversion coatings from X-ray absorption near edge spectroscopy (Xanes). Corros Sci 34:41–49

    Article  Google Scholar 

  8. Fahrenholz WG, O’Keefe MY, Zhou H, Grant JT (2002) Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys. Sufr Coat Technol 155:208–213

    Article  Google Scholar 

  9. EU Directive 2002/95/EC. Restriction of Hazardous Substances in Electrical and Electronic Equipment. (RoHS directive 2002), www.broadcom.com/docs/, www.chem.agilent.com/

  10. U.S. Department of Health and Human Services, Public Health Service, Agency of Toxic Substances and Disease Registry (2008) Toxicological profile for Chromium, www.atsdr.cdc.gov/toxprofiles/tp7.pdf

  11. U.S. Environmental Protection Agency Washington, DC, August (1998) Toxicological review of hexavalent chromium. http://www.epa.gov/iris/toxreviews/0144tr.pdf

  12. Falconnet PJ (1993) The rare earth industry: a world of rapid change. J Alloys Comp 192:114–117

    Article  Google Scholar 

  13. Muecke G, Möller P (1988) The not-so-rare earths. Sci Am 258:72–77

    Article  CAS  Google Scholar 

  14. Hinton BRW, Arnott DR, Ryan E (1984) The inhibition of aluminum corrosion by cerium cations. Metals Forum 7:211–217

    CAS  Google Scholar 

  15. Hinton BRW, Ryan E, Arnott DR, Thrathen PN, Willson L, Williams BE (1985) The inhibition of aluminium alloy corrosion by rare earth metal cations. Corros Austral 10:12–17

  16. Hinton BRW, Arnott DR, Ryan E (1986) Matter Forum 9:162

    CAS  Google Scholar 

  17. Hinton B, Huges A, Taylor R, Handerson M, Nelson K, Wilson L, Proceedings of the 13th international corrosion conference Melburne, (Australia)

  18. Hamdy AS, Beccaria AM (2005) Effect of surface preparation prior to cerium pre-treatment on the corrosion protection performance of aluminum composites. J Appl Electrochem 35:473–478

    Article  CAS  Google Scholar 

  19. Yasakau KA, Zheludkevich ML, Ferreira MGS (2008) Lanthanide salts as corrosion inhibitors for AA5083. Mechanism and efficiency of corrosion inhibition. J Electrochem Soc 155:C169–C177

    Article  CAS  Google Scholar 

  20. Machkova M, Matter EA, Kozhukharov S, Kozhukharov V (2013) Effect of the anionic part of various Ce(III) salts on the corrosion inhibition efficiency of AA2024 aluminium alloy. Corr Sci 69:396–405

    Article  CAS  Google Scholar 

  21. Arenas MA, Bethencourt M, Botana FJ, de Damborenea J, Marcos M (2001) Inhibition of 5083 aluminium alloy and galvanised steel by lanthanide salts. Corros Sci 43:157–170

    Article  CAS  Google Scholar 

  22. Dias SAS, Marques A, Lamaka SV, Simões A, Diamantino TC, Ferreira MGS (2013) Unravelling the corrosion inhibition mechanisms of bi-functional inhibitors by EIS and SEM–EDS. Electrochim Acta 112:549–556

    Article  CAS  Google Scholar 

  23. Matter EA, Kozhukharov S, Machkova M, Kozhukharov V (2013) Electrochemical studies on the corrosion inhibition of AA2024 aluminium alloy by rare earth ammonium nitrates in 3.5 % NaCl solutions. Mater Corros 64(5):404–408. doi:10.1002/maco.201106349

    Google Scholar 

  24. Tamborim SM, Maisonnave APZ, Azambuja DS, Englert GE (2008) An electrochemical and superficial assessment of the corrosion behavior of AA 2024-T3 treated with metacryloxypropylmethoxysilane and cerium nitrate. Surf Coat Technol 202:5991–6001

    Article  CAS  Google Scholar 

  25. Tavandashti NP, Sanjabi S (2010) Corrosion study of hybrid sol–gel coatings containing boehmite nanoparticles loaded with cerium nitrate corrosion inhibitor. Prog Org Coat 69:384–391

    Article  CAS  Google Scholar 

  26. Kozhukharov S, Kozhukharov V, Schem M, Aslan M, Wittmar M, Wittmar A, Veith M (2012) Protective ability of hybrid nano-composite coatings with cerium sulphate as inhibitor against corrosion of AA2024 aluminium alloy. Prog Org Coat 73:95–103

    Article  CAS  Google Scholar 

  27. Cabral AM, Trabelsi W, Serra R, Montemor MF, Zheludkevich ML, Ferreira MGS (2006) The corrosion resistance of hot dip galvanised steel and AA2024-T3 pre-treated with bis-[triethoxysilylpropyl] tetrasulfide solutions doped with Ce(NO3)3. Corros Sci 48:3740–3758

    Article  CAS  Google Scholar 

  28. Lee YL, Cheen FJ, Lin CS (2013) Corrosion resistance studies of cerium conversion coatings with fluoride-free pretreatment on AZ91D magnesium alloy. J Electrochem Soc 160:C28–C35

    Article  CAS  Google Scholar 

  29. Rivera BF, Johnson BY, O’Keefe M, Farenholz WG (2004) Deposition and characterization of cerium oxide conversion coatings on aluminum alloy 7075-T6. Surf Coat Technol 176:349–356

    Article  CAS  Google Scholar 

  30. O’Keefe M. J., Geng S., Joshi, S (2007) Cerium-based conversion coatings as alternatives to hex chrome. Metalfinishing 105:25–28

  31. Fahrenholtz WG, O’Keefe MJ, Zhou H, Grant JT (2002) Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys. Surf Coat Technol 155:208–213

    Article  CAS  Google Scholar 

  32. Palomino LEM, Aoki IV, de Melo HG (2006) Microstructural and electrochemical characterization of Ce conversion layers formed on Al alloy 2024-T3 covered with Cu-rich smut. Electrochim Acta 51:5943–5953

    Article  CAS  Google Scholar 

  33. Dekroly A, Petitjean J-P (2005) Study of the deposition of cerium oxide by conversion on to aluminium alloys. Surf Coat Technol 194:1–9. doi:10.1016/j.surfcoat.2004.05.012

    Article  Google Scholar 

  34. Huges AE, Scholes FH, Glenn AM, Lau D, Muster TH, Hardin SG (2009) Factors influencing the deposition of Ce-based conversion coatings, part I: the role of Al3+ ions. Surf Coat Technol 203:2927–2936

    Article  Google Scholar 

  35. Aramaki K (2006) The effect of modification with hydrogen peroxide on a hydrated cerium(III) oxide layer for protection of zinc against corrosion in 0.5 M NaCl. Corros Sci 48:766–782

    Article  CAS  Google Scholar 

  36. Pinc W, Geng S, O’Keefe M, Fahrenholtz W, O’Keefe T (2009) Effects of acid and alkaline based surface preparations on spray de posited cerium based conversion coatings on Al2024-T3. Appl Surf Sci 255:4061–4065

    Article  CAS  Google Scholar 

  37. Zhao D, Sun J, Zhang L, Tan Y, Li J (2010) Corrosion behavior of rare earth cerium based conversion coating on aluminum alloy. J Rare Earths 28:371–374

    Article  Google Scholar 

  38. Aziz I, Qi Z, Min X (2009) Corrosion inhibition of SiCp/5A06 aluminum metal matrix composite by cerium conversion treatment. Chin J Aeronaut 22:670–676

    Article  Google Scholar 

  39. Lourier YY (1967) Manual on analytical chemistry. Gov. Ed. “Chemistry”, Moscow, pp 305–307

    Google Scholar 

  40. Damaskin BB, Petriy OA (1983) Introduction in the electrochemical kinetics. Gov. Ed. Superior School, Moscow, p 52

    Google Scholar 

  41. Scholes FH, Soste C, Hughes AE, Hardin SG, Curtis PR (2006) The role of hydrogen peroxide in the deposition of cerium-based conversion coatings. Appl Surf Sci 253:1770–1780

    Article  CAS  Google Scholar 

  42. Newmann B, Steinbock O, Muller SC, Dalal NS (1997) Stoichiometric fingerprinting as an aid in understanding complex reactions: the oxidation of malonic acid by Cerium(IV). J Phys Chem A 101:2743–2745

    Article  Google Scholar 

  43. Santos E, Hindelang P, Quaino P, Schmickler W (2011) A model for the Heyrovsky reaction as the second step in hydrogen evolution. Phys Chem Chem Phys 13:6992–7000

    Article  CAS  Google Scholar 

  44. Osadchaya LI, Sokolov VV, Trushnikova L, Zubareva AP (2003) Preparation of cerium hydrides. Inorg Mater 39:1142–1143

    Article  CAS  Google Scholar 

  45. Yasakau KA, Zheludkevich ML, Lamaka SV, Ferreira MGS (2006) Mechanism of corrosion inhibition of AA2024 by rare-earth compounds. J Phys Chem B 110:5515–5528

    Article  CAS  Google Scholar 

  46. Matter EA, Kozhukharov SV, Machkova MS (2011) Effect of preliminary treatment on the superficial morphology and the corrosion behaviour of AA2024 aluminum alloy. Bul Chem Commun 43:23–30

    CAS  Google Scholar 

  47. Matter E, Kozhukharov S (2010) Correlation between preliminary pretreatments and the behaviour of AA2024 aluminium alloy in 3.5 % NaCl model corrosive medium. Ann Proc Univ Rousse (Bulgaria) 49:14–19

    Google Scholar 

  48. Arnott DR, Ryan NE, Hinton BRW, Sexton BA, Hughes AE (1985) Auger and XPS studies of cerium corrosion inhibition on 7075 aluminum alloy. Appl Surf Sci 22–23:236–251

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of project BG 051PO001-3.3.06-0038. We are thankful to Assoc. Prof. Dr. Eng. I. Nenov for the valuable information provided and for his assistance with the data interpretation. Dr. Gustavo Pelaez Lourido is acknowledged for the opportunity for international collaboration activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan V. Kozhukharov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhukharov, S.V., Acuña, O.F., Machkova, M.S. et al. Influence of buffering on the spontaneous deposition of cerium conversion coatings for corrosion protection of AA2024-T3 aluminum alloy. J Appl Electrochem 44, 1093–1105 (2014). https://doi.org/10.1007/s10800-014-0718-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0718-7

Keywords

Navigation