Skip to main content

Advertisement

Log in

Mechanical and Wear Behavior of Al-Si5Cu3/ZrB2 In-Situ Reinforced Metal Matrix Composite

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this study, the in-situ ZrB2/Al-Si5Cu3 aluminum alloy composites were fabricated through the salt-melt reaction route with different weight fractions of ZrB2 reinforcements, i.e., 2.5%, 5%, and 7.5%. The composites were tested for their density, hardness, tensile strength, flexural strength, impact strength, and wear properties. The influence of reinforcement on the properties was studied concerning the wt.% of reinforcement. The increase in density of composites compared to the matrix material confirms the formation of the in-situ reinforcement phase. The microstructure showed a desirable distribution of reinforced particles over the matrix at all weight fractions of the reinforcements in the composites. The ZrB2 particles formed in the matrix have particle sizes in the range from 255 nm to 955 nm and the grain size has been reduced from 242 microns to 110 microns as the result of particle-induced solidification. The hardness of the composites containing ZrB2 reinforcements of 2.5, 5, and 7.5 wt.% showed improvement by 8%, 17.5%, and 34% respectively compared to the parent alloy. There is an improvement in the tensile strength and elongation for the wt.% of ZrB2 up to 5 wt.%, from 115 MPa to 183 MPa, after which, there was a drop in the tensile strength. The detailed analysis of tensile fractography shows that the agglomerated ZrB2 reinforced particles at higher weight fractions lead to a decrease in strength. The results of flexural strength also affirm the strength of 5 wt.% ZrB2/Al-Si5Cu3 increased from the matrix material’s flexural strength of 337 MPa to 672 MPa. The wear study shows that the composite with 7.5 wt.% ZrB2 possesses a higher wear resistance. However, the impact strength did not show any differences in the weight % of reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. V.S. Ayar, M.P. Sutaria, Development and characterization of in situ AlSi5Cu3/TiB2 composites. Int. J. Metalcast.Metalcast. 14(1), 59–68 (2020). https://doi.org/10.1007/s40962-019-00328-x

    Article  CAS  Google Scholar 

  2. Farina ME, Bell P, Ferreira CRF, Dedavid BA. 2017 Effects of solidification rate in the microstructure of Al-Si5Cu3 aluminum cast alloy. In: Materials Research. Vol 20. Universidade Federal de Sao Carlos; 273-278. https://doi.org/10.1590/1980-5373-mr-2017-0083

  3. R.P. Barot, M.P. Sutaria, Effect of multiple remelting on behaviour of AlSi5Cu3 aluminium alloy. Mater. Today Proc. 62, 4046–4051 (2022). https://doi.org/10.1016/j.matpr.2022.04.608

    Article  CAS  Google Scholar 

  4. J. Liu, B. Zhou, L. Xu, Z. Han, J. Zhou, Fabrication of SiC reinforced aluminium metal matrix composites through microwave sintering. Mater. Res. Exp. (2020). https://doi.org/10.1088/2053-1591/abc8bf

    Article  Google Scholar 

  5. H. Ravinath, I.I. Ahammed et al., Impact of aging temperature on the metallurgical and dry sliding wear behaviour of LM25 / Al2O3 metal matrix composite for potential automotive application. Int. J. Lightweight Mater. Manuf. 6(3), 416–433 (2023). https://doi.org/10.1016/j.ijlmm.2023.01.002

    Article  CAS  Google Scholar 

  6. Y. Zakerinia, E. Jafari, A. Khosravifard, N. Hosseinabadi, Investigation of microstructural, mechanical and tribological properties of Al356/3-9%ZrB2 composites produced by the stir casting process. Metall. Res. Technol. 120(2), 205 (2023). https://doi.org/10.1051/metal/2023004

    Article  CAS  Google Scholar 

  7. B.P. Sahoo, D. Das, A.K. Chaubey, Strengthening mechanisms and modelling of mechanical properties of submicron-TiB2 particulate reinforced Al 7075 metal matrix composites. Mater. Sci. Eng. A 825, 141873 (2021). https://doi.org/10.1016/j.msea.2021.141873

    Article  CAS  Google Scholar 

  8. G.F. Aynalem, Processing methods and mechanical properties of aluminium matrix composites. Adv. Mater. Sci. Eng. (2020). https://doi.org/10.1155/2020/3765791

    Article  Google Scholar 

  9. S. BalasivanandhaPrabu, L. Karunamoorthy, S. Kathiresan, B. Mohan, Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. J. Mater. Process. Technol. 171(2), 268–273 (2006). https://doi.org/10.1016/j.jmatprotec.2005.06.071

    Article  CAS  Google Scholar 

  10. G. Gautam, A. Mohan, Effect of ZrB2 particles on the microstructure and mechanical properties of hybrid (ZrB2 + Al3Zr)/AA5052 insitu composites. J. Alloys Compd. 649, 174–183 (2015). https://doi.org/10.1016/j.jallcom.2015.07.096

    Article  CAS  Google Scholar 

  11. A. Mahamani, Experimental investigation on drilling of AA2219-TiB2/ZrB2 In-situ metal matrix composites. Proc. Mater. Sci. 6, 950–960 (2014). https://doi.org/10.1016/j.mspro.2014.07.165

    Article  CAS  Google Scholar 

  12. I. Dinaharan, N. Murugan, Effect of friction stir welding on microstructure, mechanical and wear properties of AA6061/ZrB2 in situ cast composites. Mater. Sci. Eng. A 543, 257–266 (2012). https://doi.org/10.1016/j.msea.2012.02.085

    Article  CAS  Google Scholar 

  13. K. Tian, Y. Zhao, L. Jiao, S. Zhang, Z. Zhang, X. Wu, Effects of in situ generated ZrB2 nano-particles on microstructure and tensile properties of 2024Al matrix composites. J. Alloys Compd. 594, 1–6 (2014). https://doi.org/10.1016/j.jallcom.2014.01.117

    Article  CAS  Google Scholar 

  14. A.S. Vivekananda, P.S. Balasivanandha, Wear behaviour of in situ Al/TiB2 composite: influence of the microstructural instability. Tribol. Lett.. Lett. 66(1), 41 (2018). https://doi.org/10.1007/s11249-018-0990-5

    Article  CAS  Google Scholar 

  15. Jenix Rino J, Balasivanandha Prabu S, Paskaramoorthy R. 2017 Comparison of thermal and mechanical properties of Al-5wt.%TiB2 and Al-5wt.%ZrB2 composites processed through salt-melt reaction route. In: Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2017.07.223

  16. W. Qian, X. Kai, R. Tao, R. Cao, C. Guan, Y. Zhao, Investigation on high-temperature creep property and mechanism of AA6111 matrix composites reinforced by in-situ ZrB2 nanoparticles. Mater CharactCharact. (2023). https://doi.org/10.1016/j.matchar.2022.112620

    Article  Google Scholar 

  17. L. Prasad, N. Kumar, A. Yadav, A. Kumar, V. Kumar, J. Winczek, In situ formation of ZrB2 and its influence on wear and mechanical properties of adc12 alloy mixed matrix composites. Materials (2021). https://doi.org/10.3390/ma14092141

    Article  PubMed  PubMed Central  Google Scholar 

  18. P. Morampudi, V.S.N. VenkataRamana, C. Prasad, K. SriramVikas Rahul, Physical, mechanical and corrosion properties of Al6061/ZrB2 metal matrix nano composites via powder metallurgy process. Mater. Today Proc. 59, 1708–1713 (2022). https://doi.org/10.1016/j.matpr.2022.03.596

    Article  CAS  Google Scholar 

  19. Z.Y. Zhang, Z.H. Wang, R. Yang, F. Chen, Y.T. Zhao, Reaction pathways of in situ ZrB2 nanoparticles during flux-assisted synthesis in Al melt. Mater CharactCharact. (2022). https://doi.org/10.1016/j.matchar.2022.112346

    Article  Google Scholar 

  20. A. Changizi, A. Kalkanli, N. Sevinc, Production of in situ aluminum–titanium diboride master alloy formed by slag–metal reaction. J. Alloys Compd. 509(2), 237–240 (2011). https://doi.org/10.1016/j.jallcom.2010.08.089

    Article  CAS  Google Scholar 

  21. G.K. Sigworth, T.A. Kuhn, Grain refinement of aluminum casting alloys. Int. J. Metalcast.Metalcast. 1(1), 31–40 (2007). https://doi.org/10.1007/BF03355416

    Article  CAS  Google Scholar 

  22. A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, A metallographic study of grain refining of Sr-modified 356 alloy. Int. J. Metalcast.Metalcast. 11(2), 305–320 (2017). https://doi.org/10.1007/s40962-016-0075-x

    Article  Google Scholar 

  23. Y.X. Liu, R.C. Wang, C.Q. Peng, Z.Y. Cai, Z.H. Zhou, X.G. Li, X.Y. Cao, Microstructures and mechanical properties of in-situ TiB2/Al− xSi− 0.3 Mg composites. Transact Nonferr Metals Soc China 31(2), 331–344 (2021). https://doi.org/10.1016/S1003-6326(21)65499-7

    Article  CAS  Google Scholar 

  24. Y.C. Kang, S.L.I. Chan, Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater. Chem. Phys. 85(2), 438–443 (2004). https://doi.org/10.1016/j.matchemphys.2004.02.002

    Article  CAS  Google Scholar 

  25. P. Schumacher, A.L. Greer, J. Worth et al., New studies of nucleation mechanisms in aluminium alloys: implications for grain refinement practice. Mater. Sci. Technol. 14(5), 394–404 (1998). https://doi.org/10.1179/mst.1998.14.5.394

    Article  CAS  Google Scholar 

  26. B.F. Schultz, J.B. Ferguson, P.K. Rohatgi, Microstructure and hardness of Al2O3 nanoparticle reinforced Al–Mg composites fabricated by reactive wetting and stir mixing. Mater. Sci. Eng. A 530, 87–97 (2011). https://doi.org/10.1016/j.msea.2011.09.042

    Article  CAS  Google Scholar 

  27. Jenix Rino J, Monish Chakravarthy R, Rajakumaran K, Naresh K, Balasivanandha Prabu S, Paskaramoorthy R. Study on mechanical and wear characteristics of IN-SITU ZrB2/aluminum alloy composites processed by salt-melt reaction. In: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). Vol 2A-2015. ; 2015. doi:https://doi.org/10.1115/IMECE2015-51351

  28. M.K. Akbari, H.R. Baharvandi, O. Mirzaee, Investigation of particle size and reinforcement content on mechanical properties and fracture behavior of A356-Al2O3 composite fabricated by vortex method. J. Compos. Mater. 48(27), 3315–3330 (2014). https://doi.org/10.1177/0021998313507618

    Article  CAS  Google Scholar 

  29. M. Karbalaei Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater. Des. (1980-2015) 66, 150–161 (2015). https://doi.org/10.1016/j.matdes.2014.10.048

    Article  CAS  Google Scholar 

  30. N. Kumar, R.K. Gautam, S. Mohan, In-situ development of ZrB2 particles and their effect on microstructure and mechanical properties of AA5052 metal-matrix composites. Mater. Des. 80, 129–136 (2015). https://doi.org/10.1016/j.matdes.2015.05.020

    Article  CAS  Google Scholar 

  31. F. Chen, Z. Chen, F. Mao, T. Wang, Z. Cao, TiB2 reinforced aluminum based in situ composites fabricated by stir casting. Mater. Sci. Eng. A 625, 357–368 (2015). https://doi.org/10.1016/j.msea.2014.12.033

    Article  CAS  Google Scholar 

  32. N.K. Prasad, P.K. Kumar, A. Sharma, M.K. Bhargava, Parameters influencing dendritic structure to improve the properties of As-cast aluminium alloys. Ind. Found. J. 60, 23–28 (2014)

    Google Scholar 

  33. M.X. Guo, M.P. Wang, K. Shen, L.F. Cao, Z. Li, Z. Zhang, Synthesis of nano TiB2 particles in copper matrix by in situ reaction of double-beam melts. J. Alloys Compd. 460(1), 585–589 (2008). https://doi.org/10.1016/j.jallcom.2007.06.026

    Article  CAS  Google Scholar 

  34. S.L. Zhang, Y.T. Zhao, G. Chen et al., Effects of in situ TiB2 particle on microstructures and mechanical properties of AZ91 alloy. J. Alloys Compd. 494(1), 94–97 (2010). https://doi.org/10.1016/j.jallcom.2009.10.103

    Article  CAS  Google Scholar 

Download references

Acknowledgement

One of the authors J. Jenix Rino would like to acknowledge the University Grand Commission of India for financially supporting the research by providing Maulana Azad National Fellowship (MANF-2013-14-CHR-TAM-30573).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jenix Rino.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rino, J.J., Vivekananda, A.S., Thangapandian, N. et al. Mechanical and Wear Behavior of Al-Si5Cu3/ZrB2 In-Situ Reinforced Metal Matrix Composite. Inter Metalcast (2024). https://doi.org/10.1007/s40962-024-01349-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-024-01349-x

Keywords

Navigation