Skip to main content

Advertisement

Log in

Enhanced electrochemical performance of olive stones-derived activated carbon by silica coating for supercapacitor applications

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Porous activated carbon (AC) was successfully elaborated from olive stones and valued as an electrode material for electrical double-layer supercapacitors. The activated carbon surface was subsequently coated by silica to improve its physico-chemical and electrochemical properties. The treated activated carbon surface (AC-Si) exhibited a meso-microporous nature. From electrochemical investigations, an improvement of the capacitive behavior was demonstrated after the silica coating. When the bare activated carbon is used as electrode materials, the specific capacitance delivered by the assembled symmetric supercapacitor is 11 F g−1 at a current density of 0.5 A g−1 for an operating voltage of 0.6 V. However, the supercapacitor based on carbon–silica electrodes showed an obvious enhancement of the specific capacitance up to 141 F g−1 at 0.5 A g−1 and operated over a larger cell voltage of 1.25 V. For the AC-Si//AC-Si device, the exhibited specific energy is 30.6 Wh kg−1 and the specific power is 1661 W kg−1 at a current density of 0.5 A g−1. Therefore, the activated carbon derived from olive stones and coated by silica is a promising electrode material for supercapacitor devices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Zhang Y, Feng H, Wu X et al (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrogen Energy 34:4889–4899

    Article  CAS  Google Scholar 

  3. Hao J, Zhong Y, Liao Y et al (2015) Face-to-face self-assembly graphene/MnO2 nanocomposites for supercapacitor applications using electrochemically exfoliated graphene. Electrochim Acta 167:412–420

    Article  CAS  Google Scholar 

  4. Hall PJ, Mirzaeian M, Fletcher SI et al (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3:1238–1251

    Article  CAS  Google Scholar 

  5. Male U, Uppugalla S, Srinivasan P (2015) Effect of reduced graphene oxide–silica composite in polyaniline: electrode material for high-performance supercapacitor. J Solid State Electrochem 19:3381–3388

    Article  CAS  Google Scholar 

  6. Joshi S, Shrestha LK, Kamachi Y et al (2015) Synthesis and characterizations of nanoporous carbon derived from Lapsi (Choerospondias axillaris) seed: effect of carbonization conditions. Adv Powder Technol 26:894–900

    Article  CAS  Google Scholar 

  7. Wang D, Geng Z, Li B, Zhang C (2015) High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons. Electrochim Acta 173:377–384

    Article  CAS  Google Scholar 

  8. Yang X, Kong L, Ma J et al (2019) Facile construction of hierarchically porous carbon nanofiber aerogel for high-performance supercapacitor. J Appl Electrochem 49:241–250

    Article  CAS  Google Scholar 

  9. Zhang X, Zhang K, Li H et al (2018) Synthesis of porous graphitic carbon from biomass by one-step method and its role in the electrode for supercapacitor. J Appl Electrochem 48:415–426

    Article  CAS  Google Scholar 

  10. Hannachi H, Msallem M, Ben Elhadj S et al (2007) Influence of the geographical locations on the agronomical and technological potentialities of the olive tree (Olea europaea L.) in Tunisia. C R Biologie 330:135–142

    Article  Google Scholar 

  11. Sellami F, Jarboui R, Hachicha S et al (2008) Co-composting of oil exhausted olive-cake, poultry manure and industrial residues of agro-food activity for soil amendment. Bioresour Technol 99:1177–1188

    Article  CAS  PubMed  Google Scholar 

  12. Cagnon B, Py X, Guillot A et al (2009) Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour Technol 100:292–298

    Article  CAS  PubMed  Google Scholar 

  13. Abioye AM, Ani FN (2015) Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew Sustain Energy Rev 52:1282–1293

    Article  CAS  Google Scholar 

  14. Yakout SM, Sharaf El-Deen G (2016) Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arab J Chem 9:S1155–S1162

    Article  CAS  Google Scholar 

  15. Zhao Z, Hao S, Hao P et al (2015) Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode. J Mater Chem A 3:15049–15056

    Article  CAS  Google Scholar 

  16. Inagaki M, Kaneko K, Endo M et al (2003) Carbon alloys: novel concepts to develop carbon science and technology. Elsevier, Amsterdam, London

  17. Ma F, Ding S, Ren H, Liu Y (2019) Sakura-based activated carbon preparation and its performance in supercapacitor applications. RSC Adv 9:2474–2483

    Article  CAS  Google Scholar 

  18. Dujearic-Stephane K, Gupta M, Kumar A et al (2021) The effect of modifications of activated carbon materials on the capacitive performance: surface, microstructure, and wettability. J Compos Sci 5:66–90

    Article  CAS  Google Scholar 

  19. Tripathi BP, Shahi VK (2011) Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36:945–979

    Article  CAS  Google Scholar 

  20. Shao C, Kim HY, Gong J et al (2003) Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Mater Lett 57:1579–1584

    Article  CAS  Google Scholar 

  21. Alper JP, Vincent M, Carraro C et al (2012) Silicon carbide coated silicon nanowires as robust electrode material for aqueous micro-supercapacitor. Appl Phys Lett 100:163901–163904

    Article  Google Scholar 

  22. Du X, Wang C, Li T, Chen M (2009) Studies on the performances of silica aerogel electrodes for the application of supercapacitor. Ionics (Kiel) 15:561–565

    Article  CAS  Google Scholar 

  23. Leonard KC, Suyama WE, Anderson MA (2011) Improvement of electrochemical capacitor electrodes using SiO2 nanoparticles. Electrochim Acta 56:10137–10144

    Article  CAS  Google Scholar 

  24. Huang H, Oike T, Watanabe F et al (2010) Development research on composite adsorbents applied in adsorption heat pump. Appl Therm Eng 30:1193–1198

    Article  CAS  Google Scholar 

  25. Si M, Feng D, Qiu L et al (2013) Free-standing highly ordered mesoporous carbon–silica composite thin films. J Mater Chem A 1:13490–13495

    Article  CAS  Google Scholar 

  26. Jaouadi M, Hbaieb S, Guedidi H et al (2017) Preparation and characterization of carbons from β-cyclodextrin dehydration and from olive pomace activation and their application for boron adsorption. J Saudi Chem Soc 21:822–829

    Article  CAS  Google Scholar 

  27. Zemni S, Hajji M, Triki M et al (2018) Study of phosphogypsum transformation into calcium silicate and sodium sulfate and their physicochemical characterization. J Clean Prod 198:874–881

    Article  CAS  Google Scholar 

  28. Strelko V, Malik DJ, Streat M (2002) Characterisation of the surface of oxidised carbon adsorbents. Carbon N Y 40:95–104

    Article  CAS  Google Scholar 

  29. Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251

    Article  PubMed  Google Scholar 

  30. Wang K, Zhao N, Lei S et al (2015) Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim Acta 166:1–11

    Article  CAS  Google Scholar 

  31. Kosmulski M (2002) The pH-dependent surface charging and the points of zero charge. J Colloid Interface Sci 253:77–87

    Article  CAS  PubMed  Google Scholar 

  32. Zawadzki J (1989) Infrared spectroscopy in surface chemistry of carbons. In: Thrower PA (ed) Chemistry and physics of carbon, vol 21. Marcel Dekker, New York, pp 147–386

    Google Scholar 

  33. Wang X (2011) Chemical and morphological characterization of mesoporous material supported copper oxide nanoparticles for potential application. J Porous Mater 18:623–630

    Article  CAS  Google Scholar 

  34. Ciric-Marjanovic G, Dragičević L, Milojević M et al (2009) Synthesis and characterization of self-assembled polyaniline nanotubes/silica nanocomposites. J Phys Chem B 113:7116–7127

    Article  CAS  PubMed  Google Scholar 

  35. Rajagopal RR, Aravinda LS, Rajarao R et al (2016) Activated carbon derived from non-metallic printed circuit board waste for supercapacitor application. Electrochim Acta 211:488–498

    Article  CAS  Google Scholar 

  36. Lu C, Su F, Hu S (2008) Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions. Appl Surf Sci 254:7035–7041

    Article  CAS  Google Scholar 

  37. Rajarao R, Mansuri I, Dhunna R et al (2014) Study of structural evolution of chars during rapid pyrolysis of waste CDs at different temperatures. Fuel 134:17–25

    Article  CAS  Google Scholar 

  38. Sheng W, Shi T, Sun B, et al (2013) Three dimensional metal film catalyst assisted etching of silicon. In: Technical proceedings of the 2013 NSTI nanotechnology conference and expo, NSTI-nanotech, vol 2. pp 427–430

  39. Nakamizo M, Kammereck R, Walker PL (1974) Laser Raman studies on carbons. Carbon N Y 12:259–267

    Article  CAS  Google Scholar 

  40. Chmiola J, Yushin G, Gogotsi Y et al (2006) Anomalous increase in carbon at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  CAS  PubMed  Google Scholar 

  41. Jaouadi M, Hamzaoui AH (2019) Boron adsorption onto activated carbon and amorphous carbon prepared from sucrose dehydration. Desalin Water Treat 149:150–156

    Article  CAS  Google Scholar 

  42. Chong MY, Numan A, Liew CW et al (2018) Enhancing the performance of green solid-state electric double-layer capacitor incorporated with fumed silica nanoparticles. J Phys Chem Solids 117:194–203

    Article  CAS  Google Scholar 

  43. Kim SY, Kim BH (2016) Silica decorated on porous activated carbon nanofiber composites for high-performance supercapacitors. J Power Sources 328:219–227

    Article  CAS  Google Scholar 

  44. Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marín F et al (2012) Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour Technol 111:185–190

    Article  CAS  PubMed  Google Scholar 

  45. Long C, Zhuang J, Xiao Y et al (2016) Nitrogen-doped porous carbon with an ultrahigh specific surface area for superior performance supercapacitors. J Power Sources 310:145–153

    Article  CAS  Google Scholar 

  46. Sudhan N, Subramani K, Karnan M et al (2017) Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and nonaqueous electrolytes. Energy Fuels 31:977–985

    Article  CAS  Google Scholar 

  47. Shen C, Li R, Yan L et al (2018) Applied surface science rational design of activated carbon nitride materials for symmetric supercapacitor applications. Appl Surf Sci 455:841–848

    Article  CAS  Google Scholar 

  48. Wen Y, Qin T, Wang Z et al (2017) Self-supported binder-free carbon fibers/MnO2 electrodes derived from disposable bamboo chopsticks for high-performance supercapacitors. J Alloys Compd 699:126–135

    Article  CAS  Google Scholar 

  49. Rawal S, Joshi B, Kumar Y (2018) Synthesis and characterization of activated carbon from the biomass of Saccharum bengalense for electrochemical supercapacitors. J Energy Storage 20:418–426

    Article  Google Scholar 

  50. Wang B, Qiu J, Feng H et al (2016) KOH-activated nitrogen doped porous carbon nanowires with superior performance in supercapacitors. Electrochim Acta 190:229–239

    Article  CAS  Google Scholar 

  51. Rajesh M, Manikandan R, Park S et al (2020) Pinecone biomass-derived activated carbon: the potential electrode material for the development of symmetric and asymmetric supercapacitors. Int J Energy Res 44:8591–8605

    Article  CAS  Google Scholar 

  52. Ye Z, Wang F, Jia C et al (2018) Biomass-based O, N-codoped activated carbon aerogels with ultramicropores for supercapacitors. J Mater Sci 53:12374–12387

    Article  CAS  Google Scholar 

  53. Pang J, Zhang W, Zhang J et al (2017) Facile and sustainable synthesis of sodium lignosulfonate derived hierarchical porous carbons for supercapacitors with high volumetric energy densities. Green Chem 19:3916–3926

    Article  CAS  Google Scholar 

  54. Hu Z, Li S, Cheng P et al (2016) N, P-co-doped carbon nanowires prepared from bacterial cellulose for supercapacitor. J Mater Sci 51:2627–2633

    Article  CAS  Google Scholar 

  55. Ahmed S, Ahmed A, Rafat M (2019) Investigation on activated carbon derived from biomass Butnea monosperma and its application as a high performance supercapacitor electrode. J Energy Storage 26:100988–100997

    Article  Google Scholar 

  56. Mourad E, Coustan L, Lannelongue P et al (2017) Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat Mater 16:446–454

    Article  CAS  PubMed  Google Scholar 

  57. Lannelongue P, Le Vot S, Fontaine O et al (2018) Investigation of Ba0.5Sr0.5CoxFe1xO3δ as a pseudocapacitive electrode material with high volumetric capacitance. Electrochim Acta 271:677–684

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by The Tunisian Ministry of Higher Education and Scientific Research. The authors thank Mr. Mounir Hajji for chemical resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouassim Ghodbane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaouadi, M., Marzouki, M., Hamzaoui, A.H. et al. Enhanced electrochemical performance of olive stones-derived activated carbon by silica coating for supercapacitor applications. J Appl Electrochem 52, 125–137 (2022). https://doi.org/10.1007/s10800-021-01623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01623-4

Keywords

Navigation