Skip to main content

Advertisement

Log in

Biomass-based O, N-codoped activated carbon aerogels with ultramicropores for supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) O, N-codoped activated carbon aerogels with ultramicropores were prepared via oxidation polymerization, freeze-drying, and carbonization/activation of aniline and sodium alginate. All the O, N-codoped activated carbon aerogels exhibit 3D interconnected hierarchical porous network structures with high specific surface areas (1337–1695 m2 g−1), ultramicropores (0.52–0.54 nm), and rich O (12.68–18.48%) and N (1.18–3.59%) doping. A typical 3D O, N-codoped activated carbon aerogel (ACA700) obtained at the activation of 700 °C exhibits excellent electrochemical performance. When ACA700 is utilized as electrode materials for supercapacitor, the highest specific capacitance of 342 F g−1 at a current density of 2 A g−1 in 3 M H2SO4 electrolyte is achieved. Furthermore, ACA700//ACA700 all-solid-state supercapacitor device displays acceptable energy density (3.8 Wh kg−1) at a power density of 246.0 W kg−1, extraordinary coulombic efficiency (95.8%), and good rate capability. Therefore, the sustainable 3D O, N-codoped activated carbon aerogels with ultramicropores demonstrate tremendous potential for energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Biener J, Stadermann M, Suss M et al (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4(3):656–667

    Article  Google Scholar 

  2. Wei XJ, Wan SG, Gao SY (2016) Self-assembly-template engineering nitrogen-doped carbon aerogels for high-rate supercapacitors. Nano Energy 28:206–215

    Article  Google Scholar 

  3. Wu XL, Wen T, Guo HL, Yang SB, Wang XK, Xu AW (2013) Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7(4):3589–3597

    Article  Google Scholar 

  4. Yin LW, Zhang ZW, Li ZQ et al (2014) Spinel ZnMn2O4 nanocrystal-anchored 3D Hierarchical carbon aerogel hybrids as anode materials for lithium ion batteries. Adv Funct Mater 24(26):4176–4185

    Article  Google Scholar 

  5. Zu GQ, Shen J, Zou LP et al (2016) Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99:203–211

    Article  Google Scholar 

  6. Liu MK, Li BM, Zhou H, Chen C, Liu YQ, Liu TX (2017) Extraordinary rate capability achieved by a 3D “skeleton/skin” carbon aerogel-polyaniline hybrid with vertically aligned pores. Chem Commun 53(19):2810–2813

    Article  Google Scholar 

  7. Liang HW, Wu ZY, Chen LF, Li C, Yu SH (2015) Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc–air battery. Nano Energy 11:366–376

    Article  Google Scholar 

  8. Ma L, Chen R, Zhu G et al (2017) Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium–sulfur batteries. ACS Nano 11(7):7274–7283

    Article  Google Scholar 

  9. Titirici MM, White RJ, Brun N et al (2015) Sustainable carbon materials. Chem Soc Rev 44(1):250–290

    Article  Google Scholar 

  10. Bi HC, Yin ZY, Cao XH et al (2013) Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents. Adv Mater 25(41):5916–5921

    Article  Google Scholar 

  11. Kadirvelu K, Goel J, Rajagopal C (2008) Sorption of lead, mercury and cadmium ions in multi-component system using carbon aerogel as adsorbent. J Hazard Mater 153(1–2):502–507

    Article  Google Scholar 

  12. Oschatz M, Boukhalfa S, Nickel W et al (2017) Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors. Carbon 113:283–291

    Article  Google Scholar 

  13. Yu M, Li J, Wang LJ (2017) KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption. Chem Eng J 310:300–306

    Article  Google Scholar 

  14. Lu W-J, Huang S-Z, Miao L et al (2017) Synthesis of MnO2/N-doped ultramicroporous carbon nanospheres for high-performance supercapacitor electrodes. Chin Chem Lett 28(6):1324–1329

    Article  Google Scholar 

  15. Wang C, Huang Y, Pan H et al (2016) Nitrogen-doped porous carbon/graphene aerogel with much enhanced capacitive behaviors. Electrochim Acta 215:100–107

    Article  Google Scholar 

  16. Yang XW, Zhuang XD, Huang YJ et al (2015) Nitrogen-enriched hierarchically porous carbon materials fabricated by graphene aerogel templated Schiff-base chemistry for high performance electrochemical capacitors. Polym Chem 6(7):1088–1095

    Article  Google Scholar 

  17. Chen MF, Jiang SX, Huang C et al (2017) Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium–sulfur batteries. Chemsuschem 10(8):1803–1812

    Article  Google Scholar 

  18. Ling Z, Wang ZY, Zhang MD et al (2016) Sustainable Synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Funct Mater 26(1):111–119

    Article  Google Scholar 

  19. Yuan XQ, Wu LS, He XL et al (2017) Separator modified with N, S co-doped mesoporous carbon using egg shell as template for high performance lithium–sulfur batteries. Chem Eng J 320:178–188

    Article  Google Scholar 

  20. Schipper F, Vizintin A, Ren JW, Dominko R, Fellinger TP (2015) Biomass-derived heteroatom-doped carbon aerogels from a salt melt sol–gel synthesis and their performance in Li–S batteries. Chemsuschem 8(18):3077–3083

    Article  Google Scholar 

  21. Tian ZW, Xiang M, Zhou JC, Hu LQ, Cai JJ (2016) Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass: direct carbonization and excellent electrochemical properties. Electrochim Acta 211:225–233

    Article  Google Scholar 

  22. Hao P, Zhao ZH, Leng YH et al (2015) Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15:9–23

    Article  Google Scholar 

  23. Zhou L, Cao H, Zhu SQ, Hou LR, Yuan CZ (2015) Hierarchical micro-/mesoporous N- and O-enriched carbon derived from disposable cashmere: a competitive cost-effective material for high-performance electrochemical capacitors. Green Chem 17(4):2373–2382

    Article  Google Scholar 

  24. Kovalenko I, Zdyrko B, Magasinski A et al (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334(6052):75–79

    Article  Google Scholar 

  25. Liu L, Yang XF, Lv CX et al (2016) Seaweed-derived route to Fe2O3 hollow nanoparticles/N-Doped graphene aerogels with high lithium Ion storage performance. ACS Appl Mater Interfaces 8(11):7047–7053

    Article  Google Scholar 

  26. Chen Y, Yan Q, Zhang S et al (2016) Buffering agents-assisted synthesis of nitrogen-doped graphene with oxygen-rich functional groups for enhanced electrochemical performance. J Power Sources 333:125–133

    Article  Google Scholar 

  27. Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19(3):438–447

    Article  Google Scholar 

  28. Zhao HB, Yuan L, Fu ZB et al (2016) Biomass-based mechanically strong and electrically conductive polymer aerogels and their application for supercapacitors. ACS Appl Mater Interfaces 8(15):9917–9924

    Article  Google Scholar 

  29. Miao L, Zhu DZ, Zhao YH et al (2017) Design of carbon materials with ultramicro-, supermicro- and mesopores using solvent- and self-template strategy for supercapacitors. Microporous Mesoporous Mater 253:1–9

    Article  Google Scholar 

  30. Miao L, Zhu D, Liu M et al (2018) Cooking carbon with protic salt: nitrogen and sulfur self-doped porous carbon nanosheets for supercapacitors. Chem Eng J 347:233–242

    Article  Google Scholar 

  31. Liu M, Zhao F, Zhu D et al (2018) Ultramicroporous carbon nanoparticles derived from metal–organic framework nanoparticles for high-performance supercapacitors. Mater Chem Phys 211:234–241

    Article  Google Scholar 

  32. Miao L, Zhu D, Liu M et al (2018) N, S co-doped hierarchical porous carbon rods derived from protic salt: facile synthesis for high energy density supercapacitors. Electrochim Acta 274:378–388

    Article  Google Scholar 

  33. Zhao ZH, Hao SM, Hao P et al (2015) Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode. J Mater Chem A 3(29):15049–15056

    Article  Google Scholar 

  34. Raymundo-Pinero E, Leroux F, Beguin F (2006) A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv Mater 18(14):1877–1882

    Article  Google Scholar 

  35. Nie GD, Lu XF, Lei JY, Wang C (2015) Seed-assisted synthesis of hierarchical manganese dioxide/carbonaceous sphere composites with enhanced supercapacitor performance. Electrochim Acta 180:1033–1040

    Article  Google Scholar 

  36. Wei DC, Liu YQ, Wang Y, Zhang HL, Huang LP, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758

    Article  Google Scholar 

  37. Liu MX, Ma XM, Gan LH, Xu ZJ, Zhu DZ, Chen LW (2014) A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for Lithium ion batteries. J Mater Chem A 2(40):17107–17114

    Article  Google Scholar 

  38. McEvoy N, Peltekis N, Kumar S et al (2012) Synthesis and analysis of thin conducting pyrolytic carbon films. Carbon 50(3):1216–1226

    Article  Google Scholar 

  39. Ye Z, Wang F, Jia C et al (2017) Nitrogen and oxygen-codoped carbon nanospheres for excellent specific capacitance and cyclic stability supercapacitor electrodes. Chem Eng J 330:1166–1173

    Article  Google Scholar 

  40. Guo DC, Mi J, Hao GP et al (2013) Ionic liquid C(16)mimBF(4) assisted synthesis of poly(benzoxazine-co-resol)-based hierarchically porous carbons with superior performance in supercapacitors. Energy Environ Sci 6(2):652–659

    Article  Google Scholar 

  41. Yu WH, Wang HL, Liu S et al (2016) N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A 4(16):5973–5983

    Article  Google Scholar 

  42. Wang X, Lou M, Yuan X et al (2017) Nitrogen and oxygen dual-doped carbon nanohorn for electrochemical capacitors. Carbon 118:511–516

    Article  Google Scholar 

  43. Wu F, Ye YS, Chen RJ et al (2015) Systematic effect for an ultra long cycle lithium–sulfur battery. Nano Lett 15(11):7431–7439

    Article  Google Scholar 

  44. Liu B, Liu Y, Chen H, Yang M, Li H (2017) Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J Power Sources 341:309–317

    Article  Google Scholar 

  45. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950

    Article  Google Scholar 

  46. Li M, Zhang YQ, Yang LL, Liu YK, Yao JS (2015) Hollow melamine resin-based carbon spheres/graphene composite with excellent performance for supercapacitors. Electrochim Acta 166:310–319

    Article  Google Scholar 

  47. Kumar R, Singh RK, Vaz AR, Savu R, Moshkalev SA (2017) Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl Mater Interfaces 9(10):8880–8890

    Article  Google Scholar 

  48. Gao ZY, Liu X, Chang JL et al (2017) Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor. J Power Sources 337:25–35

    Article  Google Scholar 

  49. Miao L, Duan H, Liu MX et al (2017) Poly(ionic liquid)-derived, N, S-codoped ultramicroporous carbon nanoparticles for supercapacitors. Chem Eng J 317:651–659

    Article  Google Scholar 

  50. Fan W, Zhang C, Tjiu WW, Pramoda KP, He CB, Liu TX (2013) Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl Mater Interfaces 5(8):3382–3391

    Article  Google Scholar 

  51. Lee WH, Moon JH (2014) Monodispersed N-doped carbon nanospheres for supercapacitor application. ACS Appl Mater Interfaces 6(16):13968–13976

    Article  Google Scholar 

  52. Chen CJ, Zhang Y, Li YJ et al (2017) All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci 10(2):538–545

    Article  Google Scholar 

  53. Tran NQ, Kang BK, Woo MH, Yoon DH (2016) Enrichment of pyrrolic nitrogen by hole defects in nitrogen and sulfur co-doped graphene hydrogel for flexible supercapacitors. Chemsuschem 9(16):2261–2268

    Article  Google Scholar 

  54. Lee G, Lee C, Yoon CM, Kim M, Jang J (2017) High-performance three-dimensional mesoporous graphene electrode for supercapacitors using lyophilization and plasma reduction. ACS Appl Mater Interfaces 9(6):5222–5230

    Article  Google Scholar 

  55. Zhao QL, Wang XY, Wu C et al (2014) Supercapacitive performance of hierarchical porous carbon microspheres prepared by simple one-pot method. J Power Sources 254:10–17

    Article  Google Scholar 

  56. Liu WW, Li X, Zhu MH, He X (2015) High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J Power Sources 282:179–186

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feijun Wang or Ziqiang Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1639 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Wang, F., Jia, C. et al. Biomass-based O, N-codoped activated carbon aerogels with ultramicropores for supercapacitors. J Mater Sci 53, 12374–12387 (2018). https://doi.org/10.1007/s10853-018-2487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2487-x

Keywords

Navigation