Skip to main content
Log in

Low-temperature electrodeposition of titanium in molten iodides

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The LiI–KI–CsI ternary system has a eutectic point at 204 °C. In this study, the electrodeposition of Ti in eutectic LiI–KI–CsI at 300 °C and 250 °C was investigated. Firstly, the concentration of Ti2+ in the eutectic molten salt was measured at 300 °C under TiI2-saturated condition. We determined the concentration to be 0.18 mol% in cation ratio. After that, electrodeposition of Ti was demonstrated at 300 °C and 250 °C. The cathode and anode were Mo and Ti, respectively. At both temperatures, metallic Ti was obtained and confirmed by XRD. This result indicates for the first time that a new electrolytic process to produce bulk metal Ti below 300 °C is possible.

Graphic abstract

(a) Optical and (b) SEM images of electrodeposited Ti on Mo electrode after electrolysis in eutectic LiI–KI–CsI at 250 °C

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nardin M, Lorthioir G (1977) Réduction électrolytique de TiCl4 en milieu igné. J Less-Common Met 56:269–276. https://doi.org/10.1016/0022-5088(77)90049-2

    Article  CAS  Google Scholar 

  2. Haarberg GM, Rolland W, Sterten Å, Thonstad J (1993) Electrodeposition of titanium from chloride melts. J Appl Electrochem 23:217–224. https://doi.org/10.1007/BF00241912

    Article  CAS  Google Scholar 

  3. Jiao S, Zhu H (2006) Novel metallurgical process for titanium production. J Mater Res 21:2172–2175. https://doi.org/10.1557/jmr.2006.0268

    Article  CAS  Google Scholar 

  4. Ning X, Åsheim H, Ren H, Jiao S, Zhu H (2011) Preparation of titanium deposit in chloride melts. Metall Mater Trans B 42:1181–1187. https://doi.org/10.1007/s11663-011-9559-5

    Article  CAS  Google Scholar 

  5. Kang M, Song J, Zhu H, Jiao S (2015) Electrochemical behavior of titanium(II) ion in a purified calcium chloride melt. Metall Mater Trans B 46B:162–168. https://doi.org/10.1007/s11663-014-0191-z

    Article  CAS  Google Scholar 

  6. Clayton FR, Mamantov G, Manning DL (1973) Electrochemical studies of titanium in molten fluorides. J Electrochem Soc 120:1193–1199. https://doi.org/10.1149/1.2403659

    Article  CAS  Google Scholar 

  7. De Lepinay J, Bouteillon J, Traore S, Renaud D, Barbier MJ (1987) Electroplating silicon and titanium in molten fluoride media. J Appl Electrochem 17:294–302. https://doi.org/10.1007/BF01023295

    Article  Google Scholar 

  8. Robin A, De Lepinay J, Barbier MJ (1987) Electrolytic coating of titanium onto iron and nickel electrodes in the molten LiF + NaF + KF eutectic. J Electroanal Chem 230:125–141. https://doi.org/10.1016/0022-0728(87)80137-7

    Article  CAS  Google Scholar 

  9. Robin A (1998) Behavior of titanium electrocoatings on nickel in fluoride melts. Mater Lett 34:196–201. https://doi.org/10.1016/S0167-577X(97)00166-3

    Article  CAS  Google Scholar 

  10. Robin A, Ribeiro RB (2000) Pulse electrodeposition of titanium on carbon steel in the LiF–NaF–KF eutectic melt. J Appl Electrochem 30:239–246. https://doi.org/10.1023/A:1003994100902

    Article  CAS  Google Scholar 

  11. Steinberg MA, Carlton SS, Sibert ME, Wainer E (1955) Preparation of titanium by fluoride electrolysis. J Electrochem Soc 102:332–340. https://doi.org/10.1149/1.2430056

    Article  CAS  Google Scholar 

  12. Sibert ME, Steinberg MA (1955) Electrodeposition of titanium on base metals. J Electrochem Soc 102:641–647. https://doi.org/10.1149/1.2429928

    Article  CAS  Google Scholar 

  13. Bockris JO, Hills GJ, Menzies IA, Young L (1956) Mechanism of the electrolytic deposition of titanium. Nature 178:654. https://doi.org/10.1038/178654a0

    Article  CAS  Google Scholar 

  14. Wei D, Okido M, Oki T (1994) Characteristics of titanium deposits by electrolysis in molten chloride–fluoride mixture. J Appl Electrochem 24:923–929. https://doi.org/10.1007/BF00348783

    Article  CAS  Google Scholar 

  15. Ene N, Zuca S (1995) Role of free F anions in the electrorefining of titanium in molten alkali halide mixtures. J Appl Electrochem 25:671–676. https://doi.org/10.1007/BF00241929

    Article  CAS  Google Scholar 

  16. Song J, Wang Q, Zhu X, Hou J, Jiao S, Zhu H (2014) The influence of fluoride anion on the equilibrium between titanium ions and electrodeposition of titanium in molten fluoride–chloride salt. Mater Trans 55:1299–1303. https://doi.org/10.2320/matertrans.M2014071

    Article  CAS  Google Scholar 

  17. Norikawa Y, Yasuda K, Nohira T (2017) Electrodeposition of titanium in a water-soluble KF–KCl molten salt. Mater Trans 58:390–394. https://doi.org/10.2320/matertrans.MK201605

    Article  CAS  Google Scholar 

  18. Bourbigot S, Flambard X (2002) Heat resistance and flammability of high performance fibres: a review. Fire Mater 26:155–168. https://doi.org/10.1002/fam.799

    Article  CAS  Google Scholar 

  19. Home page of DuPont de Nemours, Inc. https://www.dupont.com/products-and-services/membranes-films/polyimide-films/brands/kapton-polyimide-film/products/kapton-hn.html. Accessed 4 Mar 2020

  20. Reid WE Jr, Bish JM, Brenner A (1957) Electrodeposition of metals from organic solutions: III. Preparation and electrolysis of titanium and zirconium compounds in nonaqueous media. J Electrochem Soc 104:21–29. https://doi.org/10.1149/1.2428488

    Article  CAS  Google Scholar 

  21. Biallozor S, Lisowska A (1980) Study on electroreduction of titanium tetrachloride in acetonitrile solutions. Electrochim Acta 25:1209–1214. https://doi.org/10.1016/0013-4686(80)87121-0

    Article  CAS  Google Scholar 

  22. Lisowska A, Biallozor S (1982) Investigations on electroreduction of TiCl4 in dimethylsulfoxide. Electrochim Acta 27:105–110. https://doi.org/10.1016/0013-4686(82)80067-4

    Article  CAS  Google Scholar 

  23. Abbott AP, Bettley A, Schiffrin DJ (1993) Titanium electrodeposition from aromatic solvents. J Electroanal Chem 347:153–164. https://doi.org/10.1016/0022-0728(93)80085-V

    Article  CAS  Google Scholar 

  24. Pereira NM, Pereira CM, Araújo JP, Silva AF (2018) Electrodeposition of an ultrathin TiO2 coating using a deep eutectic solvent based on choline chloride. Thin Solid Films 645:391–398. https://doi.org/10.1016/j.tsf.2017.11.005

    Article  CAS  Google Scholar 

  25. Herlem G, Fantini S, Tran-Van P, Fahys B, Godani P, Sutter E, Goncalves AM, Mathieu C, Herlem M (2001) Cathodic behavior of liquid ammonia solutions of titanium tetraiodide at room temperature. J Electrochem Soc 148:D94–D95. https://doi.org/10.1149/1.1374217

    Article  CAS  Google Scholar 

  26. Mukhopadhyay I, Freyland W (2003) Electrodeposition of Ti nanowires on highly oriented pyrolytic graphite from an ionic liquid at room temperature. Langmuir 19:1951–1953. https://doi.org/10.1021/la020891j

    Article  CAS  Google Scholar 

  27. Mukhopadhyay I, Aravinda CL, Borissov D, Freyland W (2005) Electrodeposition of Ti from TiCl4 in the ionic liquid l-methyl-3-butyl-imidazolium bis (trifluoro methyl sulfone) imide at room temperature: study on phase formation by in situ electrochemical scanning tunneling microscopy. Electrochim Acta 50:1275–1281. https://doi.org/10.1016/j.electacta.2004.07.052

    Article  CAS  Google Scholar 

  28. Katayama Y, Ogawa K, Miura T (2005) Electrochemical reduction of titanium tetrabromide in a hydrophobic room-temperature molten salt. Electrochemistry 73:576–578. https://doi.org/10.5796/electrochemistry.73.576

    Article  CAS  Google Scholar 

  29. Aurbach D, Gofer Y, Chusid O, Eshel H (2007) On nonaqueous electrochemical behavior of titanium and Ti4+ compounds. Electrochim Acta 52:2097–2101. https://doi.org/10.1016/j.electacta.2006.08.019

    Article  CAS  Google Scholar 

  30. Ding J, Wu J, MacFarlane D, Price WE, Wallace G (2008) Induction of titanium reduction using pyrrole and polypyrrole in the ionic liquid ethyl-methyl-imidazolium bis(trifluoromethanesulphonyl)amide. Electrochem Comm 10:217–221. https://doi.org/10.1016/j.elecom.2007.11.021

    Article  CAS  Google Scholar 

  31. Endres F, El Abedin SZ, Saad AY, Moustafa EM, Borissenko N, Price WE, Wallace GG, MacFarlane DR, Newman PJ, Bund A (2008) On the electrodeposition of titanium in ionic liquids. Phys Chem Chem Phys 10:2189–2199. https://doi.org/10.1039/B800353J

    Article  CAS  Google Scholar 

  32. O’Grady WE, Cheek GT (2004) Electrochemical reduction of TiOx at room temperature in ionic liquids. Proc Electrochem Soc. https://doi.org/10.1149/200424.0984PV

    Article  Google Scholar 

  33. Zhang X, Hua Y, Xu C, Zhang Q, Cong X, Xu N (2011) Direct electrochemical reduction of titanium dioxide in Lewis basic AlCl3–1-butyl-3-methylimidizolium ionic liquid. Electrochim Acta 56:8530–8533. https://doi.org/10.1016/j.electacta.2011.07.037

    Article  CAS  Google Scholar 

  34. Ding J, Wu J, MacFarlane DR, Price WE, Wallace G (2008) Electrochemical co-deposition of Tin+ phases with gold in ionic liquids. Phys Chem Chem Phys 10:5863–5869. https://doi.org/10.1039/B803650K

    Article  CAS  Google Scholar 

  35. Xu C, Liu Y, Hua Y, Li J, Zhang Q (2017) Electrochemical and chemical behaviors of titanium in AlCl3–BMIC melt. Mater Trans 58:377–382. https://doi.org/10.2320/matertrans.MK201612

    Article  CAS  Google Scholar 

  36. Wu Q, Pulletikurthi G, Carstens T, Endres F (2018) On the electrodeposition of titanium from TiCl4 in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide: in situ AFM and spectroscopic investigations. J Electrochem Soc 165:D223–D230. https://doi.org/10.1149/2.1081805jes

    Article  CAS  Google Scholar 

  37. Falola BD, Suni II (2015) Low temperature electrochemical deposition of highly active elements. Curr Opin Solid State Mater Sci 19:77–84. https://doi.org/10.1016/j.cossms.2014.11.006

    Article  CAS  Google Scholar 

  38. Sangster J, Pelton AD (1991) Thermodynamic calculation of phase diagrams of the 60 common-ion ternary systems containing cations Li, Na, K, Rb, Cs and anions F, Cl, Br, I. J Phase Equilib 12:511–537. https://doi.org/10.1007/BF02645064

    Article  CAS  Google Scholar 

  39. Tokushige M, Nishikiori T, Ito Y (2010) Plasma-induced cathodic discharge electrolysis to form various metal/alloy nanoparticles. Russ J Electrochem 46:619–626. https://doi.org/10.1134/S1023193510060042

    Article  CAS  Google Scholar 

  40. Tomonari T (1964) Electrolytic production method of titanium metal (part 2). Denki Kagaku (Electrochemistry) 32:566–573. https://doi.org/10.5796/kogyobutsurikagaku.32.566(in Japanese)

    Article  Google Scholar 

  41. Fortin BJ, Wurm JG, Gravel L, Potvin RJA (1959) Electrodeposition of adherent titanium coatings on induction heated cathodes in fused salts. J Electrochem Soc 106:428–433. https://doi.org/10.1149/1.2427373

    Article  CAS  Google Scholar 

  42. Takeuchi S, Watanabe O (1964) Studies on the method for electro-refining of titanium from the molten salts (I) effect on the various molten salt baths on the electro-refining. J Japan Inst Met Mater 28:633–638. https://doi.org/10.2320/jinstmet1952.28.10_633(in Japanese)

    Article  CAS  Google Scholar 

  43. Takeuchi S, Watanabe O (1964) The investigation on the electrorefining of titanium from molten salts (II) crystal shapes and growth of titanium from the various molten salt in the electro-refining. J Japan Inst Met Mater 28:728–734. https://doi.org/10.2320/jinstmet1952.28.11_728(in Japanese)

    Article  CAS  Google Scholar 

  44. Chase NW Jr (1998) NIST-JANAF, thermochemical tables, 4th edn. ACS and AIP, Washington, D.C.

    Google Scholar 

  45. Fast JD (1939) The preparation of pure titanium iodides. Recl Trav Chim Pays-Bas 58:174–180. https://doi.org/10.1002/recl.19390580209

    Article  CAS  Google Scholar 

  46. Rolsten RF (1961) Iodide metals and metal iodides. Wiley, New York

    Google Scholar 

  47. Mellgren S, Opie W (1957) Equilibrium between titanium metal, titanium dichloride, and titanium trichloride in molten sodium chloride–strontium chloride melts. JOM 9:266–269. https://doi.org/10.1007/BF03398486

    Article  Google Scholar 

  48. Mellgren S, Alpert MB (1958) Determination of reduced titanium chlorides in fused salt melts. Anal Chem 30:2061–2063. https://doi.org/10.1021/ac60144a061

    Article  CAS  Google Scholar 

  49. Sekimoto H, Nose Y, Uda T, Sugimura H (2010) Quantitative analysis of titanium ions in the equilibrium with metallic titanium in NaCl–KCl equimolar molten salt. Mater Trans 51:2121–2124. https://doi.org/10.2320/matertrans.M2010238

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by New Energy and Industrial Technology Development Organization (NEDO) under the Innovative Structural Materials Project (Innovative Structural Materials Association (ISMA)) (Project Number: 100180900026). The authors are grateful to Dr. Hideki Fujii and Mr. Matsuhide Horikawa at Toho Titanium Co., Ltd. for their kind support. Cesium iodide for our preliminary experiment was supplied by Daiichi Kigenso Kagaku Kogyo Co., Ltd.

Funding

New Energy and Industrial Technology Development Organization (NEDO) under the Innovative Structural Materials Project (Innovative Structural Materials Association (ISMA)) (Project Number: 100180900026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazuhiro Kumamoto or Tetsuya Uda.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumamoto, K., Kishimoto, A. & Uda, T. Low-temperature electrodeposition of titanium in molten iodides. J Appl Electrochem 50, 1209–1216 (2020). https://doi.org/10.1007/s10800-020-01470-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01470-9

Keywords

Navigation