Skip to main content

Advertisement

Log in

Nitrogen and sulfur co-doped hierarchical graphene hydrogel for high-performance electrode materials

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this investigation, nitrogen and sulfur co-doped graphene hydrogel (N,S-GH) with well-connected hierarchical networks was prepared using a simple one-step process. The hierarchical structures provide electrically conductive channels for ion transfer, whereas N,S heteroatoms improve the chemical reactivity and pseudocapacitance of the electrode material. An optimized N,S-GH as a bind-free supercapacitor electrode demonstrates a large gravimetric capacitance (294.8 F g−1 at 1 A g−1), long lifetime (89.4% retention after 10,000 cycles), and excellent rate capability, twice as that of pure GH due to the synergistic effect of N and S doping. Therefore, a large capacitance of the optimized N,S-GH is ascribed to fast ion diffusion, large accessible area (hierarchical network), and pseudocapacitance (N and S co-doping). Furthermore, the optimized N,S-GH-based supercapacitor delivers a high energy density (8.6 Wh kg−1) at a high power density (2.4 kW kg−1). Overall, the obtained N,S-GH through this investigation presents a promising electrode material with outstanding electrochemical properties for energy storage applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  1. Gogotsi Y, Simon P (2011) Materials science. True performance metrics in electrochemical energy storage. Science 334:917–918. https://doi.org/10.1126/science.1213003

    Article  CAS  PubMed  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854. https://doi.org/10.1038/nmat2297

    Article  CAS  PubMed  Google Scholar 

  3. Yun XW, Xiong ZY, Tu L et al (2017) Hierarchical porous graphene film: an ideal material for laser-carving fabrication of flexible micro-supercapacitors with high specific capacitance. Carbon 125:308–317. https://doi.org/10.1016/j.carbon.2017.09.063

    Article  CAS  Google Scholar 

  4. Palacin MR (2009) Recent advances in rechargeable battery materials: a chemist's perspective. Chem Soc Rev 38:2565–2575. https://doi.org/10.1039/b820555h

    Article  CAS  PubMed  Google Scholar 

  5. Xu Y, Lin ZY, Zhong X et al (2014) Holey graphene frameworks for highly efficient capacitive energy storage. Nat Commun 5:4554. https://doi.org/10.1038/ncomms5554

    Article  CAS  PubMed  Google Scholar 

  6. Zhong C, Deng YD, Hu WB et al (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539. https://doi.org/10.1039/c5cs00303b

    Article  CAS  PubMed  Google Scholar 

  7. Chen YJ, Liu ZE, Sun L et al (2018) Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte. J Power Sources 390:215–223. https://doi.org/10.1016/j.jpowsour.2018.04.057

    Article  CAS  Google Scholar 

  8. Wu JF, Zhang QE, Wang JJ et al (2018) A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ Sci 11:1280–1286. https://doi.org/10.1039/c8ee00078f

    Article  CAS  Google Scholar 

  9. Xiong ZY, Liao CL, Han WH et al (2015) Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv Mater 27:4469–4475. https://doi.org/10.1002/adma.201501983

    Article  CAS  PubMed  Google Scholar 

  10. Dai SG, Liu Z, Zhao BT et al (2018) A high-performance supercapacitor electrode based on N-doped porous graphene. J Power Sources 387:43–48. https://doi.org/10.1016/j.jpowsour.2018.03.055

    Article  CAS  Google Scholar 

  11. Stoller MD, Park S, Zhu Y et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502. https://doi.org/10.1021/nl802558y

    Article  CAS  PubMed  Google Scholar 

  12. Miller JR, Outlaw RA, Holloway BC (2011) Graphene electric double layer capacitor with ultra-high-power performance. Electrochim Acta 56:10443–10449. https://doi.org/10.1016/j.electacta.2011.05.122

    Article  CAS  Google Scholar 

  13. Sui ZY, Meng YN, Xiao PW et al (2015) Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents. ACS Appl Mater Interfaces 7:1431–1438. https://doi.org/10.1021/am5042065

    Article  CAS  PubMed  Google Scholar 

  14. Ji JY, Li Y, Peng WC et al (2015) Advanced graphene-based binder-free electrodes for high-performance energy storage. Adv Mater 27:5264–5279. https://doi.org/10.1002/adma.201501115

    Article  CAS  PubMed  Google Scholar 

  15. Li JH, Zhang GP, Fu CP et al (2017) Facile preparation of nitrogen/sulfur co-doped and hierarchical porous graphene hydrogel for high-performance electrochemical capacitor. J Power Sources 345:146–155. https://doi.org/10.1016/j.jpowsour.2017.02.011

    Article  CAS  Google Scholar 

  16. Xu Y, Sheng K, Li C et al (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4230. https://doi.org/10.1021/nn101187z

    Article  CAS  PubMed  Google Scholar 

  17. Luan VH, Tien HN, Hoa LT et al (2013) Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor. J Mater Chem A 1:208–211. https://doi.org/10.1039/c2ta00444e

    Article  CAS  Google Scholar 

  18. Kong W, Zhu J, Zhang M et al (2018) Three-dimensional N- and S-codoped graphene hydrogel with in-plane pores for high performance supercapacitor. Microporous Mesoporous Mater 268:260–267. https://doi.org/10.1016/j.micromeso.2018.04.029

    Article  CAS  Google Scholar 

  19. Liu M, Huo S, Xu M et al (2018) Structural engineering of N/S co-doped carbon material as high-performance electrode for supercapacitors. Electrochim Acta 274:389–399. https://doi.org/10.1016/j.electacta.2018.04.084

    Article  CAS  Google Scholar 

  20. Zhang DY, Hao Y, Zheng LW et al (2013) Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance. J Mater Chem A 1:7584–7591. https://doi.org/10.1039/c3ta11208j

    Article  CAS  Google Scholar 

  21. Pan ZH, Zhi HZ, Qiu YC et al (2018) Achieving commercial-level mass loading in ternary-doped holey graphene hydrogel electrodes for ultrahigh energy density supercapacitors. Nano Energy 46:266–276. https://doi.org/10.1016/j.nanoen.2018.02.007

    Article  CAS  Google Scholar 

  22. Liu MY, Niu J, Zhang ZP et al (2018) Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 51:366–372. https://doi.org/10.1016/j.nanoen.2018.06.037

    Article  CAS  Google Scholar 

  23. Wen ZH, Wang XC, Mao S et al (2012) Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv Mater 24:5610–5016. https://doi.org/10.1002/adma.201201920

    Article  CAS  PubMed  Google Scholar 

  24. Zhang LP, Niu JB, Li MT et al (2014) Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells. J Phys Chem C 118:3545–3553. https://doi.org/10.1021/jp410501u

    Article  CAS  Google Scholar 

  25. Zhao Y, Hu C, Hu Y et al (2012) A versatile, ultralight, nitrogen-doped graphene framework. Angew Chem Int Ed Engl 51:11371–11375. https://doi.org/10.1002/anie.201206554

    Article  CAS  PubMed  Google Scholar 

  26. Wen Y, Rufford TE, Hulicova-Jurcakova D et al (2016) Nitrogen and phosphorous co-doped graphene monolith for supercapacitors. ChemSusChem 9:513–520. https://doi.org/10.1002/cssc.201501303

    Article  CAS  PubMed  Google Scholar 

  27. Dang F, Yang PF, Zhao W et al (2019) Tuning capacitance of graphene films via a robust routine of adjusting their hierarchical structures. Electrochim Acta 298:254–264. https://doi.org/10.1016/j.electacta.2018.12.071

    Article  CAS  Google Scholar 

  28. Che JF, Shen LY, Xiao YH (2010) A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion. J Mater Chem 20:1722–1727. https://doi.org/10.1039/b922667b

    Article  CAS  Google Scholar 

  29. Chen J, Sheng KX, Luo PH et al (2012) Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv Mater 24:4569–4573. https://doi.org/10.1002/adma.201201978

    Article  CAS  PubMed  Google Scholar 

  30. Zhao J, Jiang YF, Fan H et al (2017) Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv Mater 29:1604569. https://doi.org/10.1002/adma.201604569

    Article  CAS  Google Scholar 

  31. Li YJ, Wang GL, Wei T et al (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165–175. https://doi.org/10.1016/j.nanoen.2015.10.038

    Article  CAS  Google Scholar 

  32. Simon P, Gogotsi Y (2013) Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc Chem Res 46:1094–1103. https://doi.org/10.1021/ar200306b

    Article  CAS  PubMed  Google Scholar 

  33. Liu K, Chen L, Chen Y et al (2011) Preparation of polyester/reduced graphene oxide composites via in situ melt polycondensation and simultaneous thermo-reduction of graphene oxide. J Mater Chem 21:8612. https://doi.org/10.1039/c1jm10717h

    Article  CAS  Google Scholar 

  34. Han Z, Tang Z, Li P et al (2013) Ammonia solution strengthened three-dimensional macro-porous graphene aerogel. Nanoscale 5:5462–5467. https://doi.org/10.1039/c3nr00971h

    Article  CAS  PubMed  Google Scholar 

  35. Mondal TK, Dinda D, Saha SK (2018) Nitrogen, sulphur co-doped graphene quantum dot: an excellent sensor for nitroexplosives. Sens Actuators B 257:586–593. https://doi.org/10.1016/j.snb.2017.11.012

    Article  CAS  Google Scholar 

  36. Zhang B-X, Gao H, Li X-L (2014) Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots. New J Chem 38:4615–4621. https://doi.org/10.1039/c4nj00965g

    Article  CAS  Google Scholar 

  37. Hu L, Jiang PP, Zhang PB et al (2016) Amine-graphene oxide/waterborne polyurethane nanocomposites: effects of different amine modifiers on physical properties. J Mater Sci 51:8296–8309. https://doi.org/10.1007/s10853-016-9993-5

    Article  CAS  Google Scholar 

  38. Hou SC, Cai X, Wu HW et al (2013) Nitrogen-doped graphene for dye-sensitized solar cells and the role of nitrogen states in triiodide reduction. Energy Environ Sci 6:3356–3362. https://doi.org/10.1039/c3ee42516a

    Article  CAS  Google Scholar 

  39. Yu M, Zhang JD, Li SM et al (2016) Three-dimensional nitrogen doped holey reduced graphene oxide framework as metal-free counter electrodes for high performance dye-sensitized solar cells. J Power Sources 308:44–51. https://doi.org/10.1016/j.jpowsour.2016.01.025

    Article  CAS  Google Scholar 

  40. Kwon T, Nishihara H, Itoi H et al (2009) Enhancement mechanism of electrochemical capacitance in nitrogen-/boron-doped carbons with uniform straight nanochannels. Langmuir 25:11961–11968. https://doi.org/10.1021/la901318d

    Article  CAS  PubMed  Google Scholar 

  41. Wei XJ, Wan SG, Gao SY (2016) Self-assembly-template engineering nitrogen-doped carbon aerogels for high-rate supercapacitors. Nano Energy 28:206–215. https://doi.org/10.1016/j.nanoen.2016.08.023

    Article  CAS  Google Scholar 

  42. Hulicova-Jurcakova D, Seredych M, Lu GQ et al (2009) Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19:438–447. https://doi.org/10.1002/adfm.200801236

    Article  CAS  Google Scholar 

  43. Liu HT, Liu YQ, Zhu DB (2011) Chemical doping of graphene. J Mater Chem 21:3335–3345. https://doi.org/10.1039/c0jm02922j

    Article  CAS  Google Scholar 

  44. Yu X, Park SK, Yeon SH et al (2015) Three-dimensional, sulfur-incorporated graphene aerogels for the enhanced performances of pseudocapacitive electrodes. J Power Sources 278:484–489. https://doi.org/10.1016/j.jpowsour.2014.12.102

    Article  CAS  Google Scholar 

  45. Zhao X, Zhang Q, Chen C-M et al (2012) Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor. Nano Energy 1:624–630. https://doi.org/10.1016/j.nanoen.2012.04.003

    Article  CAS  Google Scholar 

  46. Zhang D, Zheng L, Ma Y et al (2014) Synthesis of nitrogen- and sulfur-codoped 3D cubic-ordered mesoporous carbon with superior performance in supercapacitors. ACS Appl Mater Interfaces 6:2657–2665. https://doi.org/10.1021/am405128j

    Article  CAS  PubMed  Google Scholar 

  47. Li Z, Xu ZW, Wang HL et al (2014) Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ Sci 7:1708–1718. https://doi.org/10.1039/c3ee43979h

    Article  CAS  Google Scholar 

  48. Worsley MA, Olson TY, Lee JR et al (2011) High surface area, sp(2)-cross-linked three-dimensional graphene monoliths. J Phys Chem Lett 2:921–925. https://doi.org/10.1021/jz200223x

    Article  CAS  PubMed  Google Scholar 

  49. Wang T, Wang LX, Wu DL et al (2015) Interaction between nitrogen and sulfur in co-doped graphene and synergetic effect in supercapacitor. Sci Rep 5:9591. https://doi.org/10.1038/srep09591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Worsley MA, Charnvanichborikarn S, Montalvo E et al (2014) Toward macroscale, isotropic carbons with graphene-sheet-like electrical and mechanical properties. Adv Funct Mater 24:4259–4264. https://doi.org/10.1002/adfm.201400316

    Article  CAS  Google Scholar 

  51. Zhou QQ, Zhang M, Chen J et al (2016) Nitrogen-doped holey graphene film-based ultrafast electrochemical capacitors. ACS Appl Mater Interfaces 8:20741–20747. https://doi.org/10.1021/acsami.6b05601

    Article  CAS  PubMed  Google Scholar 

  52. Liang Q, Ye L, Huang ZH et al (2014) A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 6:13831–13837. https://doi.org/10.1039/c4nr04541f

    Article  CAS  PubMed  Google Scholar 

  53. Zhao J, Jiang YF, Fan H et al (2017) Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv Mater.https://doi.org/10.1002/adma.201604569

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of National Natural Science Foundation of China (11890674).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6219.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, F., Zhao, W., Yang, P. et al. Nitrogen and sulfur co-doped hierarchical graphene hydrogel for high-performance electrode materials. J Appl Electrochem 50, 463–473 (2020). https://doi.org/10.1007/s10800-020-01404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01404-5

Keywords

Navigation