Skip to main content

Advertisement

Log in

Fabrication and enhanced supercapacitive performance of sulfur and nitrogen co-doped porous graphene

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we present a strategy to prepare the sulfur and nitrogen co-doped porous graphene electrode, in which, three main procedures—the pore-formation in the natural graphite, the preparation of sulfur doped porous graphite intercalation compounds (S-PGIC) and the construction of the sulfur/nitrogen co-doped porous reduced graphite oxide (SN-PRGO) are included. The as-prepared SN-PRGO sample can behave relatively high specific surface area (SSA) and simultaneously provide through-plane and in-plane diffusion paths for electrolyte ions, thus exhibiting an outstanding capacitive performance. Its specific capacitance at the scan rate of 5 mV s−1 in 6 M KOH aqueous electrolyte can reach up to 438 F g−1, which is, to the best of our knowledge, among the highest values so far reported for heteroatoms doped carbon materials. Besides, SN-PRGO also exhibits an excellent cycling stability with almost 94% of its initial capacitance being retained after the long-term consecutive cycling. This work suggests that constructing the doped graphene-based materials by generating the pores in the graphite sheets and using the intercalated substances among the graphite layers as the dopant sources can be considered as a promising strategy for the development of high performance electrodes in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Xu, B. Xu, Y. Gu, Z. Xiong, J. Sun, X. Zhao, Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6, 1388–1414 (2013)

    Article  Google Scholar 

  2. C. Chen, Q. Zhang, M. Yang, C. Huang, Y. Yang, M. Wang, Structural evolution during annealing of thermally reduced grapheme nanosheets for application in supercapacitors. Carbon 50, 3572–3584 (2012)

    Article  Google Scholar 

  3. L. Zhang, D. Huang, N. Hu, C. Yang, M. Li, H. Wei, Z. Yang, Y. Su, Y. Zhang, Three-dimensional structures of graphene/polyanline hybrid films constructed by steamed water for high-performance supercapacitors. J. Power Sources 342, 1–8 (2017)

    Article  Google Scholar 

  4. D. Liu, C. Fu, N. Zhang, H. Zhou, Y. Kuang, Three-dimensional porous nitrogen doped graphene hydrogel for high energy density supercapacitors. Electrochim. Acta 213, 291–297 (2016)

    Article  Google Scholar 

  5. M. Lqbal, M. Hassan, M. Ashiq, S. Lqbal. N. Bibi, B. Parveen, High specific capacitance and energy density of synthesiszed graphene oxide based hierarchical AL2S3 nanorambutan for supercapacitor applications. Electrochim. Acta 246, 1097–1103 (2017)

    Article  Google Scholar 

  6. P. Wang, H. He, X. Xu, Y. Jin, Significantly enhancing supercapacitive performance of nitrogen-doped graphene nanosheet electrodes by phosphoric acid activation. ACS Appl. Mater. Interfaces 6, 1563–1568 (2014)

    Article  Google Scholar 

  7. Y. Wen, T. Rufford, D. Hulicova-Jurcakova, L. Wang, Nitrogen and phosphorous co-doped graphene monolith for supercapacitors. Chem. Sus. Chem. 9, 513–520 (2016)

    Article  Google Scholar 

  8. J. Choi, M. Yang, S. Kim, Pseudocapacitive organic catechol derivative-functionalized three-dimensional graphene aerogel hybrid electrodes for high-performance supercapacitors. Appl. Surf. Sci. 422, 316–320 (2017)

    Article  Google Scholar 

  9. X. Zhou, H. Li, J. Yang, Biomass-derived activated carbon materials with plentiful heteroatoms for high-performance electrochemical capacitor electrodes. J. Energy Chem. 25, 35–40 (2016)

    Article  Google Scholar 

  10. X. Yu, H. Park, Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors. Carbon 77, 59–65 (2014)

    Article  Google Scholar 

  11. M. Kota, X. Yu, S. Yeon, H. Cheong, H. Park, Ice-templated three dimensional nitrogen doped graphene for enhanced supercapacitor performance. J. Power sources 303, 372–378 (2016)

    Article  Google Scholar 

  12. X. Zhang, P. Yan, R. Zhang, K. Liu, Y. Liu, T. Liu, X. Wang, A novel approach of binary doping sulfur and nitrogen into graphene layers for enhancing electrochemical performances of supercapacitors. J. Mater. Chem. A 4, 19053–19059 (2016)

    Article  Google Scholar 

  13. C. Uthaisar, V. Barone, Edge effects on the characteristics of Li diffusion in graphene. Nano Lett. 10, 2838–2842 (2010)

    Article  Google Scholar 

  14. L. Jiang, L. Sheng, C. Long, Z. Fan, Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy 11, 471–480 (2015)

    Article  Google Scholar 

  15. Y. Gao, Y. Zhang, Y. Zhang, L. Xie, X. Li, F. Su, X. Wei, Z. Xu, C. Chen, R. Cai, Three-dimensional paper-like grapheme framework with highly orientated laminar structure as binder-free supercapacitor electrode. J. Energy Chem. 25, 49–54 (2016)

    Article  Google Scholar 

  16. W. Hummers, R. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)

    Article  Google Scholar 

  17. C. Zheng, X. Zhou, H. Cao, G. Wang, Z. Liu, Synthesis of porous graphene/activated carbon composite with high packing density and large specific surfance area for supercapacitor electrode material. J. Power Sources 258, 290–296 (2014)

    Article  Google Scholar 

  18. J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. A 22, 23710–23725 (2012)

    Article  Google Scholar 

  19. C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Synthesis of phosphorous-doped graphene and its multifunctional applications for oxygen reduction and lithium ion batteries. Adv. Mater. 25, 4932–4937 (2013)

    Article  Google Scholar 

  20. M. Toda, A. Takagaki, M. Okamura, J. Knodo, S. Hayashi, K. Domen, S. Hayashi, M. Hara, Green chemistry: biodiesel made with sugar catalyst. Nature 438, 178–178 (2005)

    Article  Google Scholar 

  21. M. Hara, Environmentally benign production of biodiesel using heterogeneous catalysts. Chem. Sus. Chem. 2, 129–135 (2009)

    Article  Google Scholar 

  22. W. Kiciński, M. Szala, M. Bystrzejewski, Sulfue-doped porous carbon: synthesis and applications. Carbon 68, 1–32 (2014)

    Article  Google Scholar 

  23. B. Yuan, W. Xing, Y. Hu, X. Mu, J. Wang, Q. Tai, G. Li, L. Liu, K. Liew, Y. Hu, Boron/phosphorus doping for retarding the oxidation of reduced graphene oxide. Carbon 101, 152–158 (2016)

    Article  Google Scholar 

  24. X. Yu, Y. Kang, H. Park, Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance. Carbon 101, 49–56 (2016)

    Article  Google Scholar 

  25. Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang, Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6, 205–211 (2012)

    Article  Google Scholar 

  26. W. Lu, M. Liu, L. Miao, D. Zhu, X. Wang, H. Duan, Z. Wang, L. Li, Z. Xu, L. Gao, L. Chen, Nitrogen-containing ultramicroporous carbon nanospheres for high performance supercapacitor electrodes. Electrochim. Acta 205, 132–141 (2016)

    Article  Google Scholar 

  27. N. Gavrilov, I. Pašti, M. Vujković, J. Travas-Sejdic, G. Ćirić-Marjanović, S. Mentus, High-performance charge storage by N-containing nanostructured carbon derived from polyaniline. Carbon 50, 3915–3927 (2012)

    Article  Google Scholar 

  28. N. Fechler, T. Fellinger, M. Antonietti, One-pot synthesis of nitrogen-sulfur-co-doped carbons with tunable composition using a simple isothiocyanate ionic liquid. J. Mater. Chem. A 1, 14097–14102 (2013)

    Article  Google Scholar 

  29. W. Si, J. Zhou, S. Zhang, S. Li, W. Xing, S. Zhou, Tunable N-doped or dual N, S doped activated hydrothermal carbon derived from human hair and glucose for supercapacitor applications. Electrochim. Acta 107, 397–405 (2013)

    Article  Google Scholar 

  30. X. Su, L. Fu, M. Cheng, J. Yang, X. Guan, X. Zheng, 3D nitrogen-doped graphene aerogel nanomesh: Facile synthesis and electrochemical properties as the electrode materials for supercapacitors. Appl. Surf. Sci. 426, 924–932 (2017)

    Article  Google Scholar 

  31. X. Sun, P. Cheng, H. Wang, H. Xu, L. Dang, Z. Liu, Z. Lei, Activation of graphene aerogel with phosphoric acid for enhanced electrocapacitive performance. Carbon 92, 1–10 (2015)

    Article  Google Scholar 

  32. B. Wang, Y. Qin, W. Tan, Y. Tao, Y. Kong, Smartly designed 3D N-doped mesoporous graphene for high-performance supercapacitor electrodes. Electrochim. Acta 241, 1–9 (2017)

    Article  Google Scholar 

  33. K. Wu, Q. Liu, Nitrogen-doped mesoporous carbons for high performance supercapacitors. Appl. Surf. Sci. 379, 132–139 (2016)

    Article  Google Scholar 

  34. Y. Li, G. Wang, T. Wei, Z. Fan, P. Yan, Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016)

    Article  Google Scholar 

  35. B. Liu, Y. Liu, H. Chen, M. Yang, H. Li, Oxygen and nitrogen co-doped porous carbon nanosheets derived from perilla frutescens for high volumetric performance supercapacitors. J. Power Sources 341, 309–317 (2017)

    Article  Google Scholar 

  36. J. Qu, C. Geng, S. Lv, G. Shao, S. Ma, M. Wu, Nitrogen, oxygen, and phosphorus decorated porous carbon derived from shrimp shell for supercapacitors. Electrochim. Acta 176, 982–998 (2015)

    Article  Google Scholar 

  37. H. Chen, Y. Xiong, T. Yu, P. Zhu, X. Yan, Z. Wang, S. Guan, Boron and nitrogen co-doped porous carbon with a high concentration of boron and its superior capacitive behavior. Carbon 113, 266–273 (2017)

    Article  Google Scholar 

  38. Z. Yu, L. Chen, L. Song, Y. Zhu, H. Ji, S. Yu, Free-standing boron an oxygen co-doped carbon nanofiber films for large volumetric capacitance and high rate capability supercapacitors. Nano Energy 15, 235–243 (2015)

    Article  Google Scholar 

  39. M. Stoller, R. Ruoff, Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 3, 1294–1301 (2010)

    Article  Google Scholar 

  40. X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu, J. Su, Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons. J. Power Sources 216, 290–296 (2012)

    Article  Google Scholar 

  41. B. Choi, J. Hong, W. Hong, P. Hammond, H. Park, Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 5, 7205–7213 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Financial supporting of this work by National Science Foundation of China (NSFC) (No. 50975247) and Hebei Natural Science Foundation (No. E2014203204) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijun Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 113 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, R., Liu, Y. et al. Fabrication and enhanced supercapacitive performance of sulfur and nitrogen co-doped porous graphene. J Mater Sci: Mater Electron 29, 3867–3875 (2018). https://doi.org/10.1007/s10854-017-8323-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8323-2

Navigation