Skip to main content
Log in

Influence of morphology on electrochemical and capacity performance of open-porous structured electrodes

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Organized structures have shown significant improvements in the electrochemical performance of rechargeable batteries. In this research, we investigated three-dimensionally connected open-porous aluminum alloy (AlSi12) as substrate coated with SiO2 nanoparticles as potential electrode in a Li-ion battery. Effects and morphological characteristics of such structure were investigated through electrochemical experiments. Results showed that the electrode performance was influenced by the pore size of the substrate. When the electrode pore size was decreased from 3000 to 2000 µm, there was a decrease of 140% in the electrode-specific capacity. Comparing with the reference sample that has no pores, the specific capacity can be increased by at least a factor of two when pores are introduced. This is due to the transition from the non-Faradic current in the non-porous non-coated electrode to the Faradic current in the porous coated electrode. This finding opens the potential for future study in kinetics of electrochemical reactions in open-pored hierarchical structures.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Notten PHL, Roozeboom F, Niessen RAH, Baggetto L (2007) 3-D integrated all-solid-state rechargeable batteries. Adv Mater 19(24):4564–4567. https://doi.org/10.1002/adma.200702398

    Article  CAS  Google Scholar 

  2. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40(5):2525–2540. https://doi.org/10.1039/c0cs00081g

    Article  CAS  PubMed  Google Scholar 

  3. Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288. https://doi.org/10.1016/j.jpowsour.2012.10.060

    Article  CAS  Google Scholar 

  4. Nam KT, Kim D-W, Yoo PJ, Chiang C-Y, Meethong N, Hammond PT, Chiang Y-M, Belcher AM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312(5775):885–888. https://doi.org/10.1126/science.1122716

    Article  CAS  PubMed  Google Scholar 

  5. Weisz PB (2004) Basic choices and constraints on long-term energy supplies. Phys Today 57(7):47–52. https://doi.org/10.1063/1.1784302

    Article  Google Scholar 

  6. Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111(7):2834–2860. https://doi.org/10.1021/jp066952u

    Article  CAS  Google Scholar 

  7. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567. https://doi.org/10.1038/nmat1672

    Article  CAS  PubMed  Google Scholar 

  8. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496. https://doi.org/10.1038/35035045. https://www.nature.com/articles/35035045#supplementary-information

    Article  CAS  Google Scholar 

  9. Takeda Y, Nishijima M, Yamahata M, Takeda K, Imanishi N, Yamamoto O (2000) Lithium secondary batteries using a lithium cobalt nitride, Li2.6Co0.4N, as the anode. Solid State Ionics 130(1):61–69. https://doi.org/10.1016/S0167-2738(99)00293-3

    Article  CAS  Google Scholar 

  10. Mao O, Dahn JR (1999) Mechanically alloyed Sn–Fe(–C) powders as anode materials for Li-ion batteries. II. The Sn–Fe system. J Electrochem Soc 146:414–422. https://doi.org/10.1149/1.1391623

    Article  CAS  Google Scholar 

  11. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2007) High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology 3:31. https://doi.org/10.1038/nnano.2007.411. https://www.nature.com/articles/nnano.2007.411#supplementary-information

    Article  Google Scholar 

  12. Cui L-F, Yang Y, Hsu C-M, Cui Y (2009) Carbon–silicon core–shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett 9(9):3370–3374. https://doi.org/10.1021/nl901670t

    Article  CAS  PubMed  Google Scholar 

  13. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7(5):414–429. https://doi.org/10.1016/j.nantod.2012.08.004

    Article  CAS  Google Scholar 

  14. Zuo X, Zhu J, Müller-Buschbaum P, Cheng Y-J (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143. https://doi.org/10.1016/j.nanoen.2016.11.013

    Article  CAS  Google Scholar 

  15. Liang B, Liu Y, Xu Y (2014) Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J Power Sources 267:469–490. https://doi.org/10.1016/j.jpowsour.2014.05.096

    Article  CAS  Google Scholar 

  16. Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039. https://doi.org/10.1016/j.jpowsour.2006.09.084

    Article  CAS  Google Scholar 

  17. Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y (2011) Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett 11(7):2949–2954. https://doi.org/10.1021/nl201470j

    Article  CAS  PubMed  Google Scholar 

  18. Yu H, Xiqian Y, Yanhong W, Hong L, Xuejie H (2011) Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency. Adv Mater 23(42):4938–4941. https://doi.org/10.1002/adma.201102568

    Article  CAS  PubMed  Google Scholar 

  19. Jha S, Ponce V, Seminario JM (2018) Investigating the effects of vacancies on self-diffusion in silicon clusters using classical molecular dynamics. J Mol Model 24(10):290. https://doi.org/10.1007/s00894-018-3814-5

    Article  CAS  PubMed  Google Scholar 

  20. Ryu JH, Kim JW, Sung YE, Oh SM (2004) Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem Solid State Lett 7(10):A306–A309. https://doi.org/10.1149/1.1792242

    Article  CAS  Google Scholar 

  21. Ma Z, Li T, Huang YL, Liu J, Zhou Y, Xue D (2013) Critical silicon-anode size for averting lithiation-induced mechanical failure of lithium-ion batteries. RSC Adv 3(20):7398–7402. https://doi.org/10.1039/C3RA41052H

    Article  CAS  Google Scholar 

  22. Owejan JE, Owejan JP, DeCaluwe SC, Dura JA (2012) Solid electrolyte interphase in Li-ion batteries: evolving structures measured in situ by neutron reflectometry. Chem Mater 24(11):2133–2140. https://doi.org/10.1021/cm3006887

    Article  CAS  Google Scholar 

  23. Park JH, Moon J, Han S, Park S, Lim JW, Yun D-J, Kim DY, Park K, Son IH (2017) Formation of stable solid-electrolyte interphase layer on few-layer graphene-coated silicon nanoparticles for high-capacity Li-ion battery anodes. J Phys Chem C 121(47):26155–26162. https://doi.org/10.1021/acs.jpcc.7b05876

    Article  CAS  Google Scholar 

  24. Kunduraci M, Al-Sharab JF, Amatucci GG (2006) High-power nanostructured LiMn2−xNixO4 high-voltage lithium-ion battery electrode materials: electrochemical impact of electronic conductivity and morphology. Chem Mater 18(15):3585–3592. https://doi.org/10.1021/cm060729s

    Article  CAS  Google Scholar 

  25. Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3(1−x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem Mater 20(19):6095–6106. https://doi.org/10.1021/cm801245r

    Article  CAS  Google Scholar 

  26. Zhao K, Pharr M, Vlassak JJ, Suo Z (2010) Fracture of electrodes in lithium-ion batteries caused by fast charging. J Appl Phys 108(7):073517. https://doi.org/10.1063/1.3492617

    Article  CAS  Google Scholar 

  27. Li J, Dozier A, Li Y, Yang F, Cheng Y-T (2011) Crack pattern formation in thin film lithium-ion battery electrodes. J Electrochem Soc 10(1149/1):3574027

    Google Scholar 

  28. Wang A, Kadam S, Li H, Shi S, Qi Y (2018) Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. NPJ Comput Mater 4(1):15. https://doi.org/10.1038/s41524-018-0064-0

    Article  CAS  Google Scholar 

  29. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL (2016) The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105:52–76. https://doi.org/10.1016/j.carbon.2016.04.008

    Article  CAS  Google Scholar 

  30. Seyyedhosseinzadeh H, Mahboubi F, Azadmehr A (2015) Estimation on diffusion coefficient of lithium ions at the interface of LiNi0.5Mn1.5O4/electrolyte in Li-ion battery. Ionics 21(2):335–344. https://doi.org/10.1007/s11581-014-1189-x

    Article  CAS  Google Scholar 

  31. Orikasa Y, Gogyo Y, Yamashige H, Katayama M, Chen K, Mori T, Yamamoto K, Masese T, Inada Y, Ohta T, Siroma Z, Kato S, Kinoshita H, Arai H, Ogumi Z, Uchimoto Y (2016) Ionic conduction in lithium ion battery composite electrode governs cross-sectional reaction distribution. Sci Rep 6:26382. https://doi.org/10.1038/srep26382. https://www.nature.com/articles/srep26382#supplementary-information

  32. Ren Z, Guo Y, Liu C-H, Gao P-X (2013) Hierarchically nanostructured materials for sustainable environmental applications. Front Chem. https://doi.org/10.3389/fchem.2013.00018

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang H, Rogach AL (2014) Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem Mater 26(1):123–133. https://doi.org/10.1021/cm4018248

    Article  CAS  Google Scholar 

  34. Yue Y, Liang H (2015) Hierarchical micro-architectures of electrodes for energy storage. J Power Sources 284:435–445. https://doi.org/10.1016/j.jpowsour.2015.03.069

    Article  CAS  Google Scholar 

  35. Yue Y, Ma L, Sun J, Jeong H-K, Liang H (2017) Super-hierarchical Ni/porous-Ni/V2O5 nanocomposites. RSC Adv. https://doi.org/10.1039/c7ra06446b

    Article  Google Scholar 

  36. Yue Y, Juarez-Robles D, Chen Y, Ma L, Kuo WCH, Mukherjee P, Liang H (2017) Hierarchical structured Cu/Ni/TiO2 nanocomposites as electrodes for lithium-ion batteries. ACS Appl Mater Interfaces 9(34):28695–28703. https://doi.org/10.1021/acsami.7b10158

    Article  CAS  PubMed  Google Scholar 

  37. Yue Y, Coburn K, Reed B, Liang H (2018) Hierarchical structured nickel–copper hybrids via simple electrodeposition. J Appl Electrochem 48(3):275–286. https://doi.org/10.1007/s10800-018-1147-9

    Article  CAS  Google Scholar 

  38. Yue Y, Juarez-Robles D, Mukherjee PP, Liang H (2018) Superhierarchical nickel–vanadia nanocomposites for lithium storage. ACS Appl Energy Mater 1(5):2056–2066. https://doi.org/10.1021/acsaem.8b00163

    Article  CAS  Google Scholar 

  39. Yue Y, Liang H (2018) 3D current collectors for lithium-ion batteries: a topical review. Small Methods. https://doi.org/10.1002/smtd.201800056

    Article  Google Scholar 

  40. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  41. Liberman A, Mendez N, Trogler WC, Kummel AC (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep 69(2–3):132–158. https://doi.org/10.1016/j.surfrep.2014.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Han Y, Lu Z, Teng Z, Liang J, Guo Z, Wang D, Han M-Y, Yang W (2017) unraveling the growth mechanism of silica particles in the Stöber method: in situ seeded growth model. Langmuir 33(23):5879–5890. https://doi.org/10.1021/acs.langmuir.7b01140

    Article  CAS  PubMed  Google Scholar 

  43. Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 4(1):1300882. https://doi.org/10.1002/aenm.201300882

    Article  CAS  Google Scholar 

  44. Yoshio M, Tsumura T, Dimov N (2005) Electrochemical behaviors of silicon based anode material. J Power Sources 146(1):10–14. https://doi.org/10.1016/j.jpowsour.2005.03.143

    Article  CAS  Google Scholar 

  45. Szczech JR, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4(1):56–72. https://doi.org/10.1039/C0EE00281J

    Article  CAS  Google Scholar 

  46. Kim H, Lee E-J, Sun Y-K (2014) Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries. Mater Today 17(6):285–297. https://doi.org/10.1016/j.mattod.2014.05.003

    Article  CAS  Google Scholar 

  47. Yu Q, Wang P, Hu S, Hui J, Zhuang J, Wang X (2011) Hydrothermal synthesis of hollow silica spheres under acidic conditions. Langmuir 27(11):7185–7191. https://doi.org/10.1021/la200719g

    Article  CAS  PubMed  Google Scholar 

  48. Czyżewski J, Burzyński P, Gaweł K, Meisner J (2009) Rapid prototyping of electrically conductive components using 3D printing technology. J Mater Process Technol 209(12):5281–5285. https://doi.org/10.1016/j.jmatprotec.2009.03.015

    Article  CAS  Google Scholar 

  49. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos B Eng 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  CAS  Google Scholar 

  50. Zhang D, Chi B, Li B, Gao Z, Du Y, Guo J, Wei J (2016) Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth Met 217:79–86. https://doi.org/10.1016/j.synthmet.2016.03.014

    Article  CAS  Google Scholar 

  51. Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos A Appl Sci Manuf 76:110–114. https://doi.org/10.1016/j.compositesa.2015.05.014

    Article  CAS  Google Scholar 

  52. Walker JM, Haberland C, Taheri Andani M, Karaca HE, Dean D, Elahinia M (2016) Process development and characterization of additively manufactured nickel–titanium shape memory parts. J Intell Mater Syst Struct 27(19):2653–2660. https://doi.org/10.1177/1045389X16635848

    Article  CAS  Google Scholar 

  53. Vora P, Mumtaz K, Todd I, Hopkinson N (2015) AlSi12 in situ alloy formation and residual stress reduction using anchorless selective laser melting. Addit Manuf. https://doi.org/10.1016/j.addma.2015.06.003

    Article  Google Scholar 

  54. Nallathambi G, Ramachandran T, Venkatachalam R, Palanivelu R (2011) Effect of silica nanoparticles and BTCA on physical properties of cotton fabrics. Mater Res 14:552–559. https://doi.org/10.1590/S1516-14392011005000086

    Article  CAS  Google Scholar 

  55. Alam M, Shen H, Asadizanjani N, Tehranipoor M, Forte D (2017) Impact of X-ray tomography on the reliability of integrated circuits. IEEE Trans Device Mater Reliab 17(1):59–68. https://doi.org/10.1109/TDMR.2017.2656839

    Article  Google Scholar 

  56. Ebner M, Geldmacher F, Marone F, Stampanoni M, Wood V (2013) X-ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv Energy Mater 3(7):845–850. https://doi.org/10.1002/aenm.201200932

    Article  CAS  Google Scholar 

  57. Eastwood DS, Bradley RS, Tariq F, Cooper SJ, Taiwo OO, Gelb J, Merkle A, Brett DJL, Brandon NP, Withers PJ, Lee PD, Shearing PR (2014) The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes. Nucl Instrum Methods Phys Res, Sect B 324:118–123. https://doi.org/10.1016/j.nimb.2013.08.066

    Article  CAS  Google Scholar 

  58. Pandolfi Ronald J, Allan Daniel B, Arenholz E, Barroso-Luque L, Campbell Stuart I, Caswell Thomas A, Blair A, De Carlo F, Fackler S, Fournier Amanda P, Freychet G, Fukuto M, Da Gürsoy, Jiang Z, Krishnan H, Kumar D, Kline RJ, Li R, Liman C, Marchesini S, Mehta A, N’Diaye Alpha T, Parkinson Dilworth Y, Parks H, Pellouchoud Lenson A, Perciano T, Ren F, Sahoo S, Strzalka J, Sunday D, Tassone Christopher J, Ushizima D, Venkatakrishnan S, Yager Kevin G, Zwart P, Sethian James A, Hexemer A (2018) Xi-cam: a versatile interface for data visualization and analysis. J Synchrotron Radiat 25(4):1261–1270. https://doi.org/10.1107/S1600577518005787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods 9:676. https://doi.org/10.1038/nmeth.2019. https://www.nature.com/articles/nmeth.2019#supplementary-information

    Article  CAS  Google Scholar 

  60. Ponnusamy P, Masood SH, Ruan D, Palanisamy S, Rashid R (2018) High strain rate dynamic behaviour of AlSi12 alloy processed by selective laser melting. Int J Adv Manuf Technol 97(1):1023–1035. https://doi.org/10.1007/s00170-018-1873-5

    Article  Google Scholar 

  61. Aboulkhair NT, Everitt NM, Maskery I, Ashcroft I, Tuck C (2017) Selective laser melting of aluminum alloys. MRS Bull 42(4):311–319. https://doi.org/10.1557/mrs.2017.63

    Article  CAS  Google Scholar 

  62. Song J, Kim J, Kang T, Kim D (2017) Design of a Porous Cathode for Ultrahigh Performance of a Li-ion Battery: An Overlooked Pore Distribution. Scientific Reports 7:42521. doi:https://doi.org/10.1038/srep42521. https://www.nature.com/articles/srep42521#supplementary-information

Download references

Acknowledgements

The authors would like to thank the Lawrence Berkeley National Lab Advanced Light Source (ALS) facility to help us make use of the X-ray tomography instrument. We also extend our gratitude to the Department of Mechanical Engineering at Texas A&M University for resources utilized during the course of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, S., Chen, Y., Zhang, B. et al. Influence of morphology on electrochemical and capacity performance of open-porous structured electrodes. J Appl Electrochem 50, 231–244 (2020). https://doi.org/10.1007/s10800-019-01378-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01378-z

Keywords

Navigation