Skip to main content
Log in

Hierarchical structured nickel–copper hybrids via simple electrodeposition

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A novel hierarchical structure is reported that comprises micro-channeled nickel deposited onto a copper substrate. The fabrication process is a one-step galvanostatic electrodeposition in a system containing a Cu cathode, graphite anode, and Ni2+/NH +4 electrolyte. Results were obtained by the characterization of vertically aligned micro-channels in Ni. The pore density, depth, and diameter are controlled by varying electrodeposition conditions. The addition of ammonium ions, increased current, and longer deposition time are found to promote formation of high density pores with small diameters leading to those micro-channels. The channel’s optimum diameter ranged from 8 to 10 µm with depths of 20–25 µm. Adding ammonium ions also generated streams of hydrogen bubbles that formed on the cathode surface. Those bubbles hinder the nucleation of Ni, resulting in the selective nucleation and therefore the growth of micro-channels. The novel hierarchical Ni/Cu hybrids have the potential to be used for current collectors for battery electrodes, substrates to grow nanostructured oxides, and among others.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lakes R (1993) Materials with structural hierarchy. Nature 361:511–515

    Article  Google Scholar 

  2. Yue Y, Liang H (2015) Hierarchical micro-architectures of electrodes for energy storage. J Power Sources 284:435–445

    Article  CAS  Google Scholar 

  3. Zhao Y, Jiang L (2009) Hollow micro/nanomaterials with multilevel interior structures. Adv Mater 21:3621–3638

    Article  CAS  Google Scholar 

  4. Liu J, Qiao SZ, Budi Hartono S, Lu GQM (2010) Monodisperse yolk–shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew Chem Int Ed 122:5101–5105

    Article  Google Scholar 

  5. Schreiber R, Do J, Roller E-M, Zhang T, Schüller VJ, Nickels PC et al (2014) Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat Nanotechnol 9:74–78

    Article  CAS  Google Scholar 

  6. Bierman MJ, Jin S (2009) Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ Sci 2:1050–1059

    Article  CAS  Google Scholar 

  7. Chen Y, Zhang X, Yu P, Ma Y (2009) Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chem Commun 0:4527–4529

    Article  CAS  Google Scholar 

  8. Sun P, Zhao W, Cao Y, Guan Y, Sun Y, Lu G (2011) Porous SnO2 hierarchical nanosheets: hydrothermal preparation, growth mechanism, and gas sensing properties. CrystEngComm 13:3718–3724

    Article  CAS  Google Scholar 

  9. Chen A, Qian J, Chen Y, Lu X, Wang F, Tang Z (2013) Enhanced sunlight photocatalytic activity of porous TiO2 hierarchical nanosheets derived from petal template. Powder Technol 249:71–76

    Article  CAS  Google Scholar 

  10. Zuo F, Yan S, Zhang B, Zhao Y, Xie Y (2008) l-Cysteine-assisted synthesis of PbS nanocube-based pagoda-like hierarchical architectures. J Phys Chem C 112:2831–2835

    Article  CAS  Google Scholar 

  11. Guo H, Liu L, Li T, Chen W, Liu J, Guo Y et al (2014) Accurate hierarchical control of hollow crossed NiCo2O4 nanocubes for superior lithium storage. Nanoscale 6:5491–5497

    Article  CAS  Google Scholar 

  12. Shin H-C, Dong J, Liu M (2003) Nanoporous structures prepared by an electrochemical deposition process. Adv Mater 15:1610–1614

    Article  CAS  Google Scholar 

  13. Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10:013001

    Article  Google Scholar 

  14. Liu H, Feng L, Zhai J, Jiang L, Zhu D (2004) Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. Langmuir 20:5659–5661

    Article  CAS  Google Scholar 

  15. Nithiyanantham U, Ramadoss A, Kundu S (2014) Supercapacitor and dye-sensitized solar cell (DSSC) applications of shape-selective TiO2 nanostructures. RSC Adv 4:35659–35672

    Article  CAS  Google Scholar 

  16. Cote LJ, Kim F, Huang J (2008) Langmuir–Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043–1049

    Article  Google Scholar 

  17. Xia D, Biswas A, Li D, Brueck SR (2004) Directed self-assembly of silica nanoparticles into nanometer-scale patterned surfaces using spin-coating. Adv Mater 16:1427–1432

    Article  CAS  Google Scholar 

  18. Qiu J, Guo M, Feng Y, Wang X (2011) Electrochemical deposition of branched hierarchical ZnO nanowire arrays and its photoelectrochemical properties. Electrochim Acta 56:5776–5782

    Article  CAS  Google Scholar 

  19. Lu X, Wang C, Favier F, Pinna N (2017) Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance. Adv Energy Mater 7:1601301

    Article  Google Scholar 

  20. Qiu H, Hudson ZM, Winnik MA, Manners I (2015) Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles. Science 347:1329–1332

    Article  CAS  Google Scholar 

  21. Liu P, Liang K (2001) Review Functional materials of porous metals made by P/M, electroplating and some other techniques. J Mater Sci 36:5059–5072

    Article  CAS  Google Scholar 

  22. Marozzi C, Chialvo A (2000) Development of electrode morphologies of interest in electrocatalysis. Part 1: electrodeposited porous nickel electrodes. Electrochim Acta 45:2111–2120

    Article  CAS  Google Scholar 

  23. Marozzi C, Chialvo A (2001) Development of electrode morphologies of interest in electrocatalysis: part 2: hydrogen evolution reaction on macroporous nickel electrodes. Electrochim Acta 46:861–866

    Article  CAS  Google Scholar 

  24. Nuñez M (2005) Metal electrodeposition. Nova Publishers, Hauppauge

    Google Scholar 

  25. Bicelli LP, Bozzini B, Mele C, D’Urzo L (2008) A review of nanostructural aspects of metal electrodeposition. Int J Electrochem Sci 3:356–408

    CAS  Google Scholar 

  26. Gamburg YD, Zangari G (2011) Theory and practice of metal electrodeposition. Springer, Berlin

    Book  Google Scholar 

  27. Schlesinger M, Paunovic M (2011) Modern electroplating. John, Hoboken

    Google Scholar 

  28. Fratesi R, Roventi G (1992) Electrodeposition of zinc-nickel alloy coatings from a chloride bath containing NH4Cl. J Appl Electrochem 22:657–662

    Article  CAS  Google Scholar 

  29. Rodriguez-Torres I, Valentin G, Lapicque F (1999) Electrodeposition of zinc–nickel alloys from ammonia-containing baths. J Appl Electrochem 29:1035–1044

    Article  CAS  Google Scholar 

  30. Fashu S, Gu C-d, Zhang J-l, Huang M-l, Wang X-l, Tu J-p (2015) Effect of EDTA and NH4Cl additives on electrodeposition of Zn–Ni films from choline chloride-based ionic liquid. Trans Nonferrous Met Soc China 25:2054–2064

    Article  CAS  Google Scholar 

  31. Barcelo G, Garcia J, Sarret M, Müller C, Pregonas J (1994) Properties of Zn-Ni alloy deposits from ammonium baths. J Appl Electrochem 24:1249–1255

    Article  CAS  Google Scholar 

  32. Rios-Reyes CH, Granados-Neri M, Mendoza-Huizar LH (2009) Kinetic study of the cobalt electrodeposition onto glassy carbon electrode from ammonium sulfate solutions. Quím Nova 32:2382–2386

    Article  CAS  Google Scholar 

  33. Walter EC, Zach MP, Favier F, Murray BJ, Inazu K, Hemminger JC et al (2003) Metal nanowire arrays by electrodeposition. ChemPhysChem 4:131–138

    Article  CAS  Google Scholar 

  34. Fu J, Cherevko S, Chung C-H (2008) Electroplating of metal nanotubes and nanowires in a high aspect-ratio nanotemplate. Electrochem Commun 10:514–518

    Article  CAS  Google Scholar 

  35. Pauric AD, Baig SA, Pantaleo AN, Wang Y, Kruse P (2013) Sponge-like porous metal surfaces from anodization in very concentrated acids. J Electrochem Soc 160:C12-C18

    Google Scholar 

  36. Low C, Wills R, Walsh F (2006) Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf Coat Technol 201:371–383

    Article  CAS  Google Scholar 

  37. Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466–1468

    Article  CAS  Google Scholar 

  38. Li A, Müller F, Gösele U (2000) Polycrystalline and monocrystalline pore arrays with large interpore distance in anodic alumina. Electrochem Solid-State Lett 3:131–134

    Article  CAS  Google Scholar 

  39. Schift H, Park S, Jung B, Choi C-G, Kee C-S, Han S-P et al (2005) Fabrication of polymer photonic crystals using nanoimprint lithography. Nanotechnology 16:S261

    Article  CAS  Google Scholar 

  40. Kim S, Lee S, Choi D, Lee K, Park H, Hwang W (2008) Fabrication of metal nanohoneycomb structures and their tribological behavior. Adv Compos Mater 17:101–110

    Article  Google Scholar 

  41. Kim S, Polycarpou AA, Liang H (2015) Electrical-potential induced surface wettability of porous metallic nanostructures. Appl Surf Sci 351:460–465

    Article  CAS  Google Scholar 

  42. Yue Y, Wu F, Choi H, Shaver C, Sanguino M, Staffel J et al (2017) Electrochemical synthesis and hydrophilicity of micro-pored aluminum foil. Surf Coat Technol 309:523–530

    Article  CAS  Google Scholar 

  43. Lo CJ, Aref T, Bezryadin A (2006) Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology 17:3264

    Article  CAS  Google Scholar 

  44. Oniciu L, Mureşan L (1991) Some fundamental aspects of levelling and brightening in metal electrodeposition. J Appl Electrochem 21:565–574

    Article  CAS  Google Scholar 

  45. Gabe D (1997) The role of hydrogen in metal electrodeposition processes. J Appl Electrochem 27:908–915

    Article  CAS  Google Scholar 

  46. Tsai W, Hsu P, Hwu Y, Chen C (2002) Electrochemistry: building on bubbles in metal electrodeposition. Nature 417:139

    Article  CAS  Google Scholar 

  47. Shin H-C, Liu M (2004) Copper foam structures with highly porous nanostructured walls. Chem Mater 16:5460–5464

    Article  CAS  Google Scholar 

  48. Li Y, Jia W-Z, Song Y-Y, Xia X-H (2007) Superhydrophobicity of 3D porous copper films prepared using the hydrogen bubble dynamic template. Chem Mater 19:5758–5764

    Article  CAS  Google Scholar 

  49. Nam D, Kim R, Han D, Kim J, Kwon H (2011) Effects of (NH4)2SO4 and BTA on the nanostructure of copper foam prepared by electrodeposition. Electrochim Acta 56:9397–9405

    Article  CAS  Google Scholar 

  50. Niu J, Liu X, Xia K, Xu L, Xu Y, Fang X et al (2015) Effect of electrodeposition parameters on the morphology of three-dimensional porous copper foams. Int J Electrochem Sci 10:7331–7340

    CAS  Google Scholar 

  51. Zhang H, Ye Y, Shen R, Ru C, Hu Y (2013) Effect of bubble behavior on the morphology of foamed porous copper prepared via electrodeposition. J Electrochem Soc 160:D441–D445

    Google Scholar 

  52. Wu X, Gao Q, Li Z (2015) Effects of additives on morphology and hydrogen evolution activities of nickel films prepared by electrodepositing. Int J Electrochem Sci 10:8823–8833

    CAS  Google Scholar 

  53. Yu X, Wang M, Wang Z, Gong X, Guo Z (2016) The structure evolution mechanism of electrodeposited porous Ni films on NH4Cl concentration. Appl Surf Sci 360:502–509

    Article  CAS  Google Scholar 

  54. Yue Y, Liang H (2017) Micro- and nano-structured vanadium pentoxide (V2O5) for electrodes of lithium–ion batteries. Adv Energy Mater 7:1602545

    Article  Google Scholar 

  55. Yue Y, Juarez-Robles D, Chen Y, Ma L, Kuo WC, Mukherjee P et al (2017) Hierarchical structured Cu/Ni/TiO2 nanocomposites as electrodes for lithium-ion batteries. ACS Appl Mater Interfaces 9:28695–28703

    Article  CAS  Google Scholar 

  56. Yue Y, Ma L, Liang H (2017) Super-hierarchical Ni/porous-Ni/V2O5 nanocomposites. RSC Adv 7:40383–40391

    Article  CAS  Google Scholar 

  57. Wesley WA (1956) Preparation of pure nickel by electrolysis of a chloride solution. J Electrochem Soc 103:296–300

    Article  CAS  Google Scholar 

  58. Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  59. Roberge PR (2000) Handbook of corrosion engineering. McGraw-Hill, New York

    Google Scholar 

  60. Revie RW, Uhlig HH (2011) Uhlig’s corrosion handbook. Wiley, New York

    Book  Google Scholar 

Download references

Acknowledgements

Part of this research is sponsored by the Turbomachinery Laboratory at the Texas A&M University and the Texas A&M University’s Strategic Initiative seed grant program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 634 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Y., Coburn, K., Reed, B. et al. Hierarchical structured nickel–copper hybrids via simple electrodeposition. J Appl Electrochem 48, 275–286 (2018). https://doi.org/10.1007/s10800-018-1147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1147-9

Keywords

Navigation