Skip to main content
Log in

Estimation on diffusion coefficient of lithium ions at the interface of LiNi0.5Mn1.5O4/electrolyte in Li-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This research tried to estimate diffusion coefficient for lithium ions through the surface of the spinel LiNi0.5Mn1.5O4 by spin-polarized total energy calculation. In addition, calculated result by this ab initio model was compared with a semi-empirical model. Both of these models predicted diffusion coefficient for lithium ions at the interface of the spinel LiNi0.5Mn1.5O4/electrolyte as 10−8 cm2 s−1 which is 3 orders of magnitude higher than the diffusion coefficient of lithium ions in LiNi0.5Mn1.5O4. Details of these two models have been explained in this paper along with calculated results for surface diffusion coefficient of LiNi0.5Mn1.5O4 cathode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang X (2009) Multiscale modeling of Li-ion cells: mechanics, heat generation and electrochemical kinetics, Ph.D. thesis, University of Michigan

  2. Colclasure AM, Smith KA, Kee RJ (2011) Modeling detailed chemistry and transport for solid-electrolyte-interface (SEI) films in Li–ion batteries. Electrochim Acta 58:33–43

    Article  CAS  Google Scholar 

  3. Latz A, Zausch J (2011) Thermodynamic consistent transport theory of Li-ion batteries. J Power Sources 196:3296–3302

    Article  CAS  Google Scholar 

  4. Bushkova OV, Andreev OL, Batalov NN, Shkerin SN, Kuznetsov MV, Tyutyunnik AP, Koryakova OV, Song EH, Chung HJ (2006) Chemical interactions in the cathode half-cell of lithium-ion batteries: part I. Thermodynamic simulation. J Power Sources 157:477–482

    Article  CAS  Google Scholar 

  5. Yokokawa H, Sakai N, Yamaji K, Horita T, Ishikawa M (1998) Thermodynamic determining factors of the positive electrode potential of lithium batteries. Solid State Ionics 113–115:1–9

    Article  Google Scholar 

  6. Gupta A, Seo JH, Zhang X, Du W, Sastry AM, Shyy W (2011) Effective transport properties of LiMn2O4 electrode via particle-scale modeling. J Electrochem Soc 158:A487–A497

    Article  CAS  Google Scholar 

  7. Martinez-Rosas E, Vasquez-Medrano R, Flores-Tlacuahuac A (2011) Modeling and simulation of lithium-ion batteries. Comput Chem Eng 35:1937–1948

    Article  CAS  Google Scholar 

  8. Van der Ven A, Ceder G (2005) First principles calculation of the interdiffusion coefficient in binary alloys. Phys Rev Lett 94:1–4

    Google Scholar 

  9. Van der Ven A, Ceder G, Asta M, Tepesch PD (2001) First-principles theory of ionic diffusion with nondilute carriers. Phys Rev B 64:1–17

    Google Scholar 

  10. Koudriachova MV, Harrison NM, de Leeuw SW (2004) First principles predictions for intercalation behaviour. Solid State Ionics 175:829–834

    Article  CAS  Google Scholar 

  11. Van der Ven A, Ceder G (2000) Lithium diffusion in layered LiXCoO2. Electrochem Solid-State Lett 3:301–304

    Google Scholar 

  12. Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in LiXMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem Solid-State Lett 7:A30–A32

    Article  CAS  Google Scholar 

  13. Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56:1354–1365

    Article  CAS  Google Scholar 

  14. Breuer H-P, Petruccione F (2002) The theory of open quantum systems, 1st ed. Oxford University Press Inc., New York

    Google Scholar 

  15. Mehrer H (2007) Diffusion in solids, fundamentals, methods, materials, diffusion-controlled processes. Springer, Berlin Heidelberg, New York

    Google Scholar 

  16. Bokun GS, Groda YG, Uebing C, Vikhrenko VS (2001) Statistical–mechanical description of diffusion in interacting lattice gases. Phys A 296:83–105

    Article  Google Scholar 

  17. Han BC, Van der Ven A, Morgan D, Ceder G (2004) Electrochemical modeling of intercalation processes with phase field models. Electrochim Acta 49:4691–4699

    Article  CAS  Google Scholar 

  18. Singh GK, Ceder G, Bazant MZ (2008) Intercalation dynamics in rechargeable battery materials: general theory and phase-transformation waves in LiFePO4. Electrochim Acta 53:7599–7613

    Article  CAS  Google Scholar 

  19. Aoki K (2006) Diffusion-controlled current with memory. J Electroanal Chem 592:31–36

    Article  CAS  Google Scholar 

  20. Seyyedhosseinzadeh H, Mahboubi F, Azadmehr A (2013) Diffusion mechanism of lithium ions in LiNi0.5Mn1.5O4. Electrochim Acta 108:867–875

    Article  CAS  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  22. H.-J. Butt, K. Garf, M. Kappl, Physics and chemistry of interfaces, 2nd ed, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003

  23. Zadin V, Danilov D, Brandell DB, Notten PHL, Aabloo A (2012) Finite element simulations of 3D ionic transportation properties in Li-ion electrolytes. Electrochim Acta 65:165–173

    Article  CAS  Google Scholar 

  24. Kang K, Ceder G (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74:1–7

    Google Scholar 

  25. Julien CM, Gendron F, Amdouni A, Massot M (2006) Lattice vibrations of materials for lithium rechargeable batteries. VI: ordered spinels. Mater Sci Eng B 130:41–48

    Article  CAS  Google Scholar 

  26. Park SH, Oh S-W, Kang SH, Belharouak I, Amine K, Sun Y-K (2007) Comparative study of different crystallographic structure of LiNi0.5Mn1.5O4−δ cathodes with wide operation voltage (2.0–5.0 V). Electrochim Acta 52:7226–7230

    Article  CAS  Google Scholar 

  27. Aurbach D, Markovsky B, Talyossef Y, Salitra G, Kimb H-J, Choi S (2006) Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells. J Power Sources 162:780–789

    Article  CAS  Google Scholar 

  28. Balachandran D, First principles study of structure, defects and proton insertion in MnO2, M.Sc. thesis, MIT, 2001

  29. McMurdie HF, Golovato E (1948) Study of the modifications of manganese dioxide. J Res Nat Bur Stand 41:589–600

    Article  CAS  Google Scholar 

  30. Kang K, Morgan D, Ceder G (2009) First principles study of Li diffusion in I-Li2NiO2 structure. Phys Rev B 79:1–4

    Google Scholar 

  31. Arrebola JC, Caballero A, Hernán L, Morales J (2005) Expanding the rate capabilities of the LiNi0.5Mn1.5O4 spinel by exploiting the synergistic effect between nano and microparticles. Electrochem Solid St 8:A641–A645

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Seyyedhosseinzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyyedhosseinzadeh, H., Mahboubi, F. & Azadmehr, A. Estimation on diffusion coefficient of lithium ions at the interface of LiNi0.5Mn1.5O4/electrolyte in Li-ion battery. Ionics 21, 335–344 (2015). https://doi.org/10.1007/s11581-014-1189-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1189-x

Keywords

Navigation