Skip to main content
Log in

Electrochemical study of cerium(IV) in the presence of ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetate (DTPA) ligands

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behaviour of the complexation of cerium(IV) with EDTA and DTPA was studied using both cyclic voltammetry (CV) and rotating disc electrode (RDE). The Ce(IV)–DTPA complex at various scan rates gave a linear correlation between the peak potential (E p ) and square root of scan rate, showing that the kinetics of the overall process was controlled by mass transport. However, when the EDTA ligand was added to the Ce(IV) there was no specific change to the potential peak, i.e. the Ce(IV)–EDTA complex has the same redox potential as the Ce(IV)/(III) couple. Kinetic parameters such as potential, limiting current, diffusion coefficients, transfer coefficient and rate constants were studied. The results from RDE experiments confirmed that the parameters measured by CV are similar under hydrodynamic conditions and can be used to determine the kinetic parameters of the redox couples. The use of DTPA as a ligand for complexation of Ce(IV) gaves more favourable results compared to the Ce–(EDTA) complex reported previously. The results of kinetic studies of Ce(IV)–DTPA complex shows promise as an electrolyte for redox flow battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rychcik M, Skyllas-Kazacos M (1988) J Power Sources 22:59

    Article  CAS  Google Scholar 

  2. Thaller LH (1979) In: NASA TM-79143, National Aeronautics and Space Administration US Department of Energy

  3. NASA TM-79067 (1977) National Aeronautics and Space Administration, US Department of Energy

  4. Liu Y, Xia X, Liu H (2004) J Power Sources 130:299

    Article  Google Scholar 

  5. Reid MA, Thaller LH (1980) NASA Tech Membr 809289:1471

    Google Scholar 

  6. Sum E, Skyllas-Kazacos M (1985) J Power Sources 15:179

    Article  CAS  Google Scholar 

  7. Tsuda I, Nozaki K, Sakuta K, Kurokawa K (1997) Sol Energy Mater Sol Cells 47:101

    Article  Google Scholar 

  8. Hasegawa K, Kimura A, Yamamura T, Shiokawa Y (2005) J Phys Chem Solids 66:593

    Article  Google Scholar 

  9. Yamamura T, Watanabe N, Shiokawa Y (2006) J Alloy Comp 408:1260

    Article  Google Scholar 

  10. Skyllas-Kazacos M, Grossmith F (1987) J Electrochem Soc 34:2950

    Article  Google Scholar 

  11. Kazacos M, Skyllas-Kazacos M (1989) J Electrochem Soc 136:2759

    Article  CAS  Google Scholar 

  12. Doria J, De Andres MC, Armenta C (1985) Proc 9th Solar Energy Soc 3:1500

    Google Scholar 

  13. Chen YWD, Santhanam KSV, Bard AJ (1981) J Electrochem Soc 128:1460

    Article  CAS  Google Scholar 

  14. Fang B, Iwasa S, Wei Y et al (2002) Electrochim Acta 47:3971

    Article  Google Scholar 

  15. Paulenova A, Creager SE (2002) J Power Sources 109:431

    Article  Google Scholar 

  16. Pletcher D, Valder E (1988) Electrochim Acta 33:499

    Article  CAS  Google Scholar 

  17. Wei Y, Fang B (2005) J Appl Electrochem 35:561

    Article  Google Scholar 

  18. Abbaspour A, Mehrgardi MA (2005) Talanta 67:579

    Article  Google Scholar 

  19. Glentworth P, Wiseall B, Wright CL et al (1968) J Inorg Nucl Chem 30:967

    Article  CAS  Google Scholar 

  20. Kiekens P, Steen L, Donche H et al (1981) Electrochim Acta 26:841

    Article  CAS  Google Scholar 

  21. Pletcher D, White JCP (1992) Electrochim Acta 37:575

    Article  CAS  Google Scholar 

  22. Rao GN (1970) Indian J Chem 8:328

    CAS  Google Scholar 

  23. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  24. Zanello P (2003) Inorganic electrochemistry theory, practice and application. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  25. Murthy ASN, Srivastava T (1989) J Power Sources 27:119

    Article  CAS  Google Scholar 

  26. Zang JB, Wang YH, Zhao SZ, Bian LY, Lu J (2007) Diamond Relat Mater 16:16

    Article  Google Scholar 

  27. Cai C, Mirkin MV (2006) J Am Chem Soc 127:171

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support by the National Research Foundation (NRF), South Africa and the Tertiary Education Support Program (TESP) of the Electricity Supply Commission (ESKOM), South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Crouch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modiba, P., Crouch, A.M. Electrochemical study of cerium(IV) in the presence of ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetate (DTPA) ligands. J Appl Electrochem 38, 1293–1299 (2008). https://doi.org/10.1007/s10800-008-9558-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9558-7

Keywords

Navigation