Skip to main content
Log in

Simulation of mass transport in SOFC composite electrodes

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The anodes used in SOFCs are composites, formed by a mixture of nickel and YSZ particles. This paper presents a model for this type of electrode, taking mass transport effects into account. The effect of the operating conditions, such as temperature and pressure, is discussed. Also, the effect of the choice of the geometrical parameters, such as electrode thickness and particle radius, on the electrode performance is analysed in detail. In particular, the electrode losses display a minimum for a well-defined radius of the electrode particles, which is related to a trade-off between activation and concentration losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Active area per unit volume (cm2 cm−3)

D :

Diffusivity (cm2 s−1)

F :

Faraday’s constant (96,487 C mol−1)

I :

Overall electrode current density (A cm−2)

i :

Current density in the electrode (A cm−2)

i 0 :

Exchange current density (A cm−2)

i n :

Transfer current density per unit of active area (A cm−2)

N :

Molar flux of the component i (mol cm−2 s−1)

p i :

Partial pressure of i component (atm)

p ref :

Reference pressure (atm)

P :

Particle dimension ratio (r io/r el)

r :

Particle radius (cm)

R :

Universal gas constant (J mol−1 K−1)

r pore :

Mean pore radius (cm)

t :

Overall electrode thickness (cm)

T :

Temperature (K)

V :

Electric potential (V)

x :

Main co-ordinate (cm)

x i :

Molar fraction (of i component) (−)

β:

Transfer coefficient

γ:

Pre-exponential factor (Eq. 8)

ε:

Porosity

η:

Overpotential (V)

ρ:

Resistivity (ohm m)

σ:

Collision diameter (A)

τ:

Tortuosity

φ:

Volumetric fraction of electronic conductor

Ω:

Collision integral

el:

Electronic conductor

io:

Ionic conductor

K :

Knudsen

0:

inlet

eff:

effective

References

  1. Fuel Cell Handbook (2000) E.G. and G. Services Parsons Inc

  2. Singhal C, Kendall K (2003) High temperature solid oxide fuel cells, fundamentals, design and applications. Elsevier, Amsterdam

    Google Scholar 

  3. Cannarozzo M (2005) Degree thesis. Effects of mass transport on the performance of composite electrodes for SOFC applications. DICHEP, University of Genoa, Genoa

  4. Costamagna P, Costa P, Antonucci V (1998) Electrochim Acta 43(3–4):375–394

    Article  CAS  Google Scholar 

  5. Cannarozzo M, Grosso S, Agnew G, Del Borghi A, Costamagna P (2007) J Fuel Cell Sci Technol 4(1):99–106

    Article  CAS  Google Scholar 

  6. Costamagna P, Costa P, Arato E (1998) Electrochim Acta 43(8):967–972

    Article  CAS  Google Scholar 

  7. Kenjo T, Osawa S, Fujikawa K (1991) J Electrochem Soc 138(2):349–355

    Article  CAS  Google Scholar 

  8. Sunde S (1996) J Electrochem Soc 143(3):1123–1132

    Article  CAS  Google Scholar 

  9. Abel J, Kornyshev AA, Lehnert W (1997) J Electrochem Soc 144(12):4253–4259

    Article  CAS  Google Scholar 

  10. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York

    Google Scholar 

  11. Mason EA, Malinauskas AP (1983) Gas transport in porous media: the dusty-gas model. Elsevier

  12. Krishna R, Wesselingh JA (2000) Mass transfer in multicomponent mixture. Delft University Press

  13. Costamagna P, Honegger K (1991) J Electrochem Soc 138(2):349–355

    Article  Google Scholar 

  14. Bossel UG (1992) Facts and figures. Final report on SOFC data, IEA report. Operating Task II, Swiss Federal Office of Energy, Berne

  15. Costamagna P, Costa P, Arato E (1998) Electrochim Acta 43(8):967–972

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Rolls-Royce Fuel Cell Systems Ltd and the European Union (European Contracts NNE5-2001-791 PIP-SOFC and SES6-CT-2003-502612 REAL-SOFC) for financial support during this work. Also, the authors acknowledge the British Council/CRUI project for funding an exchange of visits between Rolls-Royce Fuel Cell Systems Ltd and the University of Genoa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Costamagna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannarozzo, M., Borghi, A.D. & Costamagna, P. Simulation of mass transport in SOFC composite electrodes. J Appl Electrochem 38, 1011–1018 (2008). https://doi.org/10.1007/s10800-008-9527-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9527-1

Keywords

Navigation