Skip to main content
Log in

KCNQ1OT1 promotes retinoblastoma progression by targeting miR-339-3p that suppresses KIF23

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Long noncoding RNAs (lncRNAs) are involved in tumor formation and development. KCNQ1OT1 regulates the malignant proliferation of retinoblastoma (RB), but the specific mechanism remains to be further investigated.

Methods

The KCNQ1OT1, miR-339-3p and KIF23 expression levels in RB were detected by qRT-PCR and western blotting. The cell viability, proliferation, migration ability and caspase-3 activity of RB cells were evaluated by CCK-8, BrdU, transwell and caspase-3 activity analysis. Western blot was used to detect the Bax and Bcl-2 protein expression in RB cells. The binding relationship between KCNQ1OT1, miR-339-3p and KIF23 was detected by luciferase, RIP and RNA pull-down assay.

Results

KCNQ1OT1 and KIF23 were up-regulated frequently in RB, and miR-339-3p was down-regulated. Functional studies showed that downregulation of KCNQ1OT1 or KIF23 inhibited the survival and migration of RB cells, and facilitated apoptosis. Interference with miR-339-3p showed the opposite effect. Mechanisms suggested that KCNQ1OT1 exited its oncogenic activity by positively regulating the expression of KIF23 and sponging miR-339-3p.

Conclusion

KCNQ1OT1/miR-339-3p/KIF23 may be a new biomarker for the diagnosis and treatment of RB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The data used and analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not available.

References

  1. Mendoza PR, Grossniklaus HE (2015) The biology of retinoblastoma. Progr Molecular Biol Transl Sci 134:503–516

    Article  Google Scholar 

  2. Rao R, Honavar SG (2017) Retinoblastoma. Indian J Pediatrics 84(12):937–944

    Article  Google Scholar 

  3. Dimaras H, Kimani K, Dimba EA et al (2012) Retinoblastoma. Lancet (London, England) 379(9824):1436–1446

    Article  PubMed  Google Scholar 

  4. Ancona-Lezama D, Dalvin LA, Shields CL (2020) Modern treatment of retinoblastoma: A 2020 review. Indian J Ophthalmol 68(11):2356–2365

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fabian ID, Onadim Z, Karaa E et al (2018) The management of retinoblastoma. Oncogene 37(12):1551–1560

    Article  CAS  PubMed  Google Scholar 

  6. Chen LL (2016) Linking Long Noncoding RNA Localization and Function. Trends Biochem Sci 41(9):761–772

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Li Z, Chen X, Zhang S (2021) Long non-coding RNAs: From disease code to drug role. Acta Pharmaceutica Sin B 11(2):340–354

    Article  CAS  Google Scholar 

  8. Peng WX, Koirala P, Mo YY (2017) LncRNA-mediated regulation of cell signaling in cancer. Oncogene 36(41):5661–5667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun W, Yang Y, Xu C, Xie Y, Guo J (2016) Roles of long noncoding RNAs in gastric cancer and their clinical applications. J Cancer Res Clin Oncol 142(11):2231–2237

    Article  CAS  PubMed  Google Scholar 

  10. Yang M, Wei W (2019) Long non-coding RNAs in retinoblastoma. Pathol Res Pract 215(8):152435

    Article  CAS  PubMed  Google Scholar 

  11. Zheng L, Zhang FX, Wang LL, Hu HL, Lian YD (2019) LncRNA KCNQ1OT1 is overexpressed in non-small cell lung cancer and its expression level is related to clinicopathology. Euro Rev For Med Pharmacol Sci 23(16):6944–6950

    CAS  Google Scholar 

  12. Liu H, Chen R, Kang F, Lai H, Wang Y (2020) KCNQ1OT1 promotes ovarian cancer progression via modulating MIR-142-5p/CAPN10 axis. Mol Genet Genomic Med 8(2):e1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Wang J, Hao H, Luo X (2020) lncRNA KCNQ1OT1 promotes the proliferation, migration and invasion of retinoblastoma cells by upregulating HIF-1α via sponging miR-153-3p. J Investigative Med Official Publ Am Federation Clin Res 68(8):1349–1356

    Article  Google Scholar 

  14. Zhang CY, Hu YC, Zhang Y et al (2021) Glutamine switches vascular smooth muscle cells to synthetic phenotype through inhibiting miR-143 expression and upregulating THY1 expression. Life Sci 277:119365

    Article  CAS  PubMed  Google Scholar 

  15. Zhang H, Yang X, Xu Y, Li H (2021) KCNQ1OT1 regulates the retinoblastoma cell proliferation, migration and SIRT1/JNK signaling pathway by targeting miR-124/SP1 axis. Biosci Reports 41(1).

  16. Paraskevopoulou MD, Hatzigeorgiou AG (2016) Analyzing MiRNA-LncRNA Interactions. Methods Molec Biol (Clifton, N.J.) 1402:271–286.

  17. Liang R, Tang Y (2020) LINC00467 knockdown repressed cell proliferation but stimulated cell apoptosis in glioblastoma via miR-339-3p/IP6K2 axis. Cancer Biomarkers : Section A Dis Markers 28(2):169–180

    Article  CAS  Google Scholar 

  18. Weber CE, Luo C, Hotz-Wagenblatt A et al (2016) miR-339-3p is a tumor suppressor in melanoma. Can Res 76(12):3562–3571

    Article  CAS  Google Scholar 

  19. Kato T, Wada H, Patel P et al (2016) Overexpression of KIF23 predicts clinical outcome in primary lung cancer patients. Lung Cancer (Amsterdam, Netherlands) 92:53–61

    Article  PubMed  Google Scholar 

  20. Wu H, Tian X, Zhu C (2020) Knockdown of lncRNA PVT1 inhibits prostate cancer progression in vitro and in vivo by the suppression of KIF23 through stimulating miR-15a-5p. Cancer Cell Int 20:283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun L, Zhang C, Yang Z et al (2016) KIF23 is an independent prognostic biomarker in glioma, transcriptionally regulated by TCF-4. Oncotarget 7(17):24646–24655

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou C, Lu Y, Li X (2015) miR-339-3p inhibits proliferation and metastasis of colorectal cancer. Oncol Lett 10(5):2842–2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang Z, Ming Y, Wang T, Zhi T, Zhou Y, Tian M (2020) LncRNA SNHG11 promotes the development of colorectal cancer by mediating miR-339-3p/SHOX2. Minerva Med. https://doi.org/10.23736/s0026-4806.20.06619-7

    Article  PubMed  Google Scholar 

  24. Chang J, Tang N, Fang Q et al (2019) Inhibition of COX-2 and 5-LOX regulates the progression of colorectal cancer by promoting PTEN and suppressing PI3K/AKT pathway. Biochem Biophys Res Commun 517(1):1–7

    Article  CAS  PubMed  Google Scholar 

  25. Liang WT, Liu XF, Huang HB, Gao ZM, Li K (2020) Prognostic significance of KIF23 expression in gastric cancer. World J Gastrointestinal Oncol 12(10):1104–1118

    Article  Google Scholar 

  26. Gao CT, Ren J, Yu J, Li SN, Guo XF, Zhou YZ (2020) KIF23 enhances cell proliferation in pancreatic ductal adenocarcinoma and is a potent therapeutic target. Ann Transl Med 8(21):1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu J, Qian D, Sun X (2020) Long noncoding RNAs as potential biomarkers in retinoblastoma: a systematic review and meta-analysis. Cancer Cell Int 20:201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang A, Shang W, Nie Q, Li T, Li S (2018) Long non-coding RNA H19 suppresses retinoblastoma progression via counteracting miR-17-92 cluster. J Cell Biochem 119(4):3497–3509

    Article  CAS  PubMed  Google Scholar 

  29. Su S, Gao J, Wang T, Wang J, Li H, Wang Z (2015) Long non-coding RNA BANCR regulates growth and metastasis and is associated with poor prognosis in retinoblastoma. Tumour Biol J Int Soc Oncodevelopmental Biol Med 36(9):7205–7211

    Article  CAS  Google Scholar 

  30. Wang L, Yi S, Wang R, Wang J (2021) Long non-coding RNA KCNQ1OT1 promotes proliferation, migration and invasion via targeting miR-134 in retinoblastoma. J Gene Med 23(6):e3336

    Article  CAS  PubMed  Google Scholar 

  31. Wang S, Su TT, Tong H, Shi W, Ma F, Quan Z (2021) CircPVT1 promotes gallbladder cancer growth by sponging miR-339-3p and regulates MCL-1 expression. Cell Death discovery 7(1):191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Y, Zhang Y, Wang S et al (2022) LINC00467 facilitates the proliferation, migration and invasion of glioma via promoting the expression of inositol hexakisphosphate kinase 2 by binding to miR-339-3p. Bioengineered 13(2):3370–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Takahashi S, Fusaki N, Ohta S et al (2012) Downregulation of KIF23 suppresses glioma proliferation. J Neurooncol 106(3):519–529

    Article  CAS  PubMed  Google Scholar 

  34. Kline-Smith SL, Walczak CE (2004) Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol Cell 15(3):317–327

    Article  CAS  PubMed  Google Scholar 

  35. Calligaris D, Verdier-Pinard P, Devred F, Villard C, Braguer D, Lafitte D (2010) Microtubule targeting agents: from biophysics to proteomics. Cell Mol Life Sci CMLS 67(7):1089–1104

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y, Chen H, Dong P et al (2020) KIF23 activated Wnt/β-catenin signaling pathway through direct interaction with Amer1 in gastric cancer. Aging 12(9):8372–8396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li T, Li Y, Gan Y et al (2019) Methylation-mediated repression of MiR-424/503 cluster promotes proliferation and migration of ovarian cancer cells through targeting the hub gene KIF23. Cell Cycle (Georgetown, Tex.) 18(14):1601–1618.

Download references

Acknowledgements

None.

Funding

Funding information is not available.

Author information

Authors and Affiliations

Authors

Contributions

WT performed the experiments and data analysis. LZ and JL conceived and designed the study. YG made the acquisition of data. WT did the analysis and interpretation of data. All authors read and approved the manuscript.

Corresponding author

Correspondence to Yu Guan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethics approval

The approval for the procedure was sanctioned by the Ethical Committee of The First Affiliated Hospital of Chengdu Medical College (Sichuan, China). The processing of clinical tissue samples is in strict compliance with the ethical standards of the Declaration of Helsinki. All the donors signed the written consent form.

Consent to participate

All patients signed written informed consent.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 244 KB)

Supplementary file2 (PDF 378 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Zhang, L., Li, J. et al. KCNQ1OT1 promotes retinoblastoma progression by targeting miR-339-3p that suppresses KIF23. Int Ophthalmol 43, 2419–2432 (2023). https://doi.org/10.1007/s10792-023-02641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-023-02641-1

Keywords

Navigation