Skip to main content

Advertisement

Log in

Microtubule targeting agents: from biophysics to proteomics

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

This review explores various aspects of the interaction between microtubule targeting agents and tubulin, including binding site, affinity, and drug resistance. Starting with the basics of tubulin polymerization and microtubule targeting agent binding, we then highlight how the three-dimensional structures of drug–tubulin complexes obtained on stabilized tubulin are seeded by precise biological and biophysical data. New avenues opened by thermodynamics analysis, high throughput screening, and proteomics for the molecular pharmacology of these drugs are presented. The amount of data generated by biophysical, proteomic and cellular techniques shed more light onto the microtubule–tubulin equilibrium and tubulin–drug interaction. Combining these approaches provides new insight into the mechanism of action of known microtubule interacting agents and rapid in-depth characterization of next generation molecules targeting the interaction between microtubules and associated modulators of their dynamics. This will facilitate the design of improved and/or alternative chemotherapies targeting the microtubule cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bryan J, Wilson L (1971) Are cytoplasmic microtubules heteropolymers? Proc Natl Acad Sci USA 68:1762–1766

    CAS  PubMed  Google Scholar 

  2. Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9:309–322

    CAS  PubMed  Google Scholar 

  3. Nogales E, Wang HW (2006) Structural intermediates in microtubule assembly and disassembly: how and why? Curr Opin Cell Biol 18:179–184

    CAS  PubMed  Google Scholar 

  4. Ballestrem C, Magid N, Zonis J, Shtutman M, Bershadsky A (2004) Interplay between the actin cytoskeleton, focal adhesions, and microtubules. In: Ridley A, Peckham M, Clark P (eds) Cell motility. From molecules to organisms. Wiley, Chichester, pp 75–99

    Google Scholar 

  5. Vasiliev JM, Gelfand IM, Domnina LV, Ivanova OY, Komm SG, Olshevskaja LV (1970) Effect of colcemid on the locomotory behaviour of fibroblasts. J Embryol Exp Morphol 24:625–640

    CAS  PubMed  Google Scholar 

  6. Kline-Smith SL, Walczak CE (2004) Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol Cell 15:317–327

    CAS  PubMed  Google Scholar 

  7. Wittmann T, Hyman A, Desai A (2001) The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 3:E28–E34

    CAS  PubMed  Google Scholar 

  8. Hill TL, Chen Y (1984) Phase changes at the end of a microtubule with a GTP cap. Proc Natl Acad Sci USA 81:5772–5776

    CAS  PubMed  Google Scholar 

  9. Wilson L, Panda D, Jordan MA (1999) Modulation of microtubule dynamics by drugs: a paradigm for the actions of cellular regulators. Cell Struct Funct 24:329–335

    CAS  PubMed  Google Scholar 

  10. Rowinsky EK, Calvo E (2006) Novel agents that target tublin and related elements. Semin Oncol 33:421–435

    CAS  PubMed  Google Scholar 

  11. Parness J, Horwitz SB (1981) Taxol binds to polymerized tubulin in vitro. J Cell Biol 91:479–487

    CAS  PubMed  Google Scholar 

  12. Derry WB, Wilson L, Jordan MA (1995) Substoichiometric binding of taxol suppresses microtubule dynamics. Biochemistry 34:2203–2211

    CAS  PubMed  Google Scholar 

  13. Dhamodharan R, Jordan MA, Thrower D, Wilson L, Wadsworth P (1995) Vinblastine suppresses dynamics of individual microtubules in living interphase cells. Mol Biol Cell 6:1215–1229

    CAS  PubMed  Google Scholar 

  14. Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I (1987) Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci USA 84:265–269

    CAS  PubMed  Google Scholar 

  15. Tilney LG, Bryan J, Bush DJ, Fujiwara K, Mooseker MS, Murphy DB, Snyder DH (1973) Microtubules: evidence for 13 protofilaments. J Cell Biol 59:267–275

    CAS  PubMed  Google Scholar 

  16. Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391:199–203

    CAS  PubMed  Google Scholar 

  17. Lowe J, Li H, Downing KH, Nogales E (2001) Refined structure of alpha beta-tubulin at 3.5 A resolution. J Mol Biol 313:1045–1057

    CAS  PubMed  Google Scholar 

  18. Panda D, Miller HP, Banerjee A, Luduena RF, Wilson L (1994) Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc Natl Acad Sci USA 91:11358–11362

    CAS  PubMed  Google Scholar 

  19. Billger MA, Bhattacharjee G, Williams RC Jr (1996) Dynamic instability of microtubules assembled from microtubule-associated protein-free tubulin: neither variability of growth and shortening rates nor “rescue” requires microtubule-associated proteins. Biochemistry 35:13656–13663

    CAS  PubMed  Google Scholar 

  20. Joshi HC (1998) Microtubule dynamics in living cells. Curr Opin Cell Biol 10:35–44

    CAS  PubMed  Google Scholar 

  21. Oakley CE, Oakley BR (1989) Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338:662–664

    CAS  PubMed  Google Scholar 

  22. Moritz M, Braunfeld MB, Guenebaut V, Heuser J, Agard DA (2000) Structure of the gamma-tubulin ring complex: a template for microtubule nucleation. Nat Cell Biol 2:365–370

    CAS  PubMed  Google Scholar 

  23. Keating TJ, Borisy GG (2000) Immunostructural evidence for the template mechanism of microtubule nucleation. Nat Cell Biol 2:352–357

    CAS  PubMed  Google Scholar 

  24. Job D, Valiron O, Oakley B (2003) Microtubule nucleation. Curr Opin Cell Biol 15:111–117

    CAS  PubMed  Google Scholar 

  25. Oakley BR (2000) An abundance of tubulins. Trends Cell Biol 10:537–542

    CAS  PubMed  Google Scholar 

  26. Dutcher SK (2001) The tubulin fraternity: alpha to eta. Curr Opin Cell Biol 13:49–54

    CAS  PubMed  Google Scholar 

  27. McKean PG, Vaughan S, Gull K (2001) The extended tubulin superfamily. J Cell Sci 114:2723–2733

    CAS  PubMed  Google Scholar 

  28. Luduena RF (1993) Are tubulin isotypes functionally significant. Mol Biol Cell 4:445–457

    CAS  PubMed  Google Scholar 

  29. Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4:938–947

    CAS  PubMed  Google Scholar 

  30. Verdier-Pinard P, Pasquier E, Xiao H, Burd B, Villard C, Lafitte D, Miller LM, Angeletti RH, Horwitz SB, Braguer D (2009) Tubulin proteomics: towards breaking the code. Anal Biochem 384:197–206

    CAS  PubMed  Google Scholar 

  31. Verdier-Pinard P, Wang F, Burd B, Angeletti RH, Horwitz SB, Orr GA (2003) Direct analysis of tubulin expression in cancer cell lines by electrospray ionization mass spectrometry. Biochemistry 42:12019–12027

    CAS  PubMed  Google Scholar 

  32. Al-Bassam J, van Breugel M, Harrison SC, Hyman A (2006) Stu2p binds tubulin and undergoes an open-to-closed conformational change. J Cell Biol 172:1009–1022

    CAS  PubMed  Google Scholar 

  33. Brouhard GJ, Stear JH, Noetzel TL, Al-Bassam J, Kinoshita K, Harrison SC, Howard J, Hyman AA (2008) XMAP215 is a processive microtubule polymerase. Cell 132:79–88

    CAS  PubMed  Google Scholar 

  34. Mozziconacci J, Sandblad L, Wachsmuth M, Brunner D, Karsenti E (2008) Tubulin dimers oligomerize before their incorporation into microtubules. PLoS One 3:e3821

    PubMed  Google Scholar 

  35. Kerssemakers JW, Munteanu EL, Laan L, Noetzel TL, Janson ME, Dogterom M (2006) Assembly dynamics of microtubules at molecular resolution. Nature 442:709–712

    CAS  PubMed  Google Scholar 

  36. Braguer D, Barret JM, McDaid H, Kruczynski A (2008) Antitumor activity of vinflunine: effector pathways and potential for synergies. Semin Oncol 35:S13–S21

    CAS  PubMed  Google Scholar 

  37. Pourroy B, Honoré S, Pasquier E, Bourgarel-Rey V, Kruczynski A, Briand C, Braguer D (2006) Antiangiogenic concentrations of vinflunine increase the interphase microtubule dynamics and decrease the motility of endothelial cells. Cancer Res 66:3256–3263

    CAS  PubMed  Google Scholar 

  38. Nettles JH, Li H, Cornett B, Krahn JM, Snyder JP, Downing KH (2004) The binding mode of epothilone A on alpha, beta-tubulin by electron crystallography. Science 305:866–869

    CAS  PubMed  Google Scholar 

  39. Pryor DE, O’Brate A, Bilcer G, Diaz JF, Wang Y, Kabaki M, Jung MK, Andreu JM, Ghosh AK, Giannakakou P, Hamel E (2002) The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity. Biochemistry 41:9109–9115

    CAS  PubMed  Google Scholar 

  40. Gaitanos TN, Buey RM, Diaz JF, Northcote PT, Teesdale-Spittle P, Andreu JM, Miller JH (2004) Peloruside A does not bind to the taxoid site on beta-tubulin and retains its activity in multidrug-resistant cell lines. Cancer Res 64:5063–5067

    CAS  PubMed  Google Scholar 

  41. Terkeltaub R (2005) Pathogenesis and treatment of crystal-induced inflammation. In: Koopman WJ, Moreland LW (eds) Arthritis and allied aconditions, 15th edn. Lippincott Williams and Wilkins, Philadelphia, pp 2357–2372

    Google Scholar 

  42. Gigant B, Wang C, Ravelli RB, Roussi F, Steinmetz MO, Curmi PA, Sobel A, Knossow M (2005) Structural basis for the regulation of tubulin by vinblastine. Nature 435:519–522

    CAS  PubMed  Google Scholar 

  43. Andreu JM, Barasoain I (2001) The interaction of baccatin III with the taxol binding site of microtubules determined by a homogeneous assay with fluorescent taxoid. Biochemistry 40:11975–11984

    CAS  PubMed  Google Scholar 

  44. Rao S, He L, Chakravarty S, Ojima I, Orr GA, Horwitz SB (1999) Characterization of the Taxol binding site on the microtubule. Identification of Arg(282) in beta-tubulin as the site of photoincorporation of a 7-benzophenone analogue of Taxol. J Biol Chem 274:37990–37994

    CAS  PubMed  Google Scholar 

  45. Rao S, Horwitz SB, Ringel I (1992) Direct photoaffinity labeling of tubulin with taxol. J Natl Cancer Inst 84:785–788

    CAS  PubMed  Google Scholar 

  46. Carboni JM, Farina V, Rao S, Hauck SI, Horwitz SB, Ringel I (1993) Synthesis of a photoaffinity analog of taxol as an approach to identify the taxol binding site on microtubules. J Med Chem 36:513–515

    CAS  PubMed  Google Scholar 

  47. Paik Y, Yang C, Metaferia B, Tang S, Bane S, Ravindra R, Shanker N, Alcaraz AA, Johnson SA, Schaefer J, O’Connor RD, Cegelski L, Snyder JP, Kingston DG (2007) Rotational-echo double-resonance NMR distance measurements for the tubulin-bound Paclitaxel conformation. J Am Chem Soc 129:361–370

    CAS  PubMed  Google Scholar 

  48. Han Y, Malak H, Chaudhary AG, Chordia MD, Kingston DG, Bane S (1998) Distances between the paclitaxel, colchicine, and exchangeable GTP binding sites on tubulin. Biochemistry 37:6636–6644

    CAS  PubMed  Google Scholar 

  49. Xiao H, Verdier-Pinard P, Fernandez-Fuentes N, Burd B, Angeletti R, Fiser A, Horwitz SB, Orr GA (2006) Insights into the mechanism of microtubule stabilization by Taxol. Proc Natl Acad Sci USA 103:10166–10173

    CAS  PubMed  Google Scholar 

  50. Huzil JT, Chik JK, Slysz GW, Freedman H, Tuszynski J, Taylor RE, Sackett DL, Schriemer DC (2008) A unique mode of microtubule stabilization induced by peloruside A. J Mol Biol 378:1016–1030

    CAS  PubMed  Google Scholar 

  51. Kowalski RJ, Giannakakou P, Gunasekera SP, Longley RE, Day BW, Hamel E (1997) The microtubule-stabilizing agent discodermolide competitively inhibits the binding of paclitaxel (Taxol) to tubulin polymers, enhances tubulin nucleation reactions more potently than paclitaxel, and inhibits the growth of paclitaxel-resistant cells. Mol Pharmacol 52:613–622

    CAS  PubMed  Google Scholar 

  52. Keskin O, Durell SR, Bahar I, Jernigan RL, Covell DG (2002) Relating molecular flexibility to function: a case study of tubulin. Biophys J 83:663–680

    CAS  PubMed  Google Scholar 

  53. Jiménez-Barbero J, Amat-Guerri F, Snyder JP (2002) The solid state, solution and tubulin-bound conformations of agents that promote microtubule stabilization. Curr Med Chem Anticancer Agents 2:91–122

    PubMed  Google Scholar 

  54. Xia S, Kenesky CS, Rucker PV, Smith AB 3rd, Orr GA, Horwitz SB (2006) A photoaffinity analogue of discodermolide specifically labels a peptide in beta-tubulin. Biochemistry 45:11762–11775

    CAS  PubMed  Google Scholar 

  55. Madiraju C, Edler MC, Hamel E, Raccor BS, Balachandran R, Zhu G, Giuliano KA, Vogt A, Shin Y, Fournier JH, Fukui Y, Brückner AM, Curran DP, Day BW (2005) Tubulin assembly, taxoid site binding, and cellular effects of the microtubule-stabilizing agent dictyostatin. Biochemistry 44:15053–15063

    CAS  PubMed  Google Scholar 

  56. Buey RM, Calvo E, Barasoain I, Pineda O, Edler MC, Matesanz R, Cerezo G, Vanderwal CD, Day BW, Sorensen EJ, López JA, Andreu JM, Hamel E, Díaz JF (2007) Cyclostreptin binds covalently to microtubule pores and lumenal taxoid binding sites. Nat Chem Biol 3:117–125

    CAS  PubMed  Google Scholar 

  57. Hamel E, Day BW, Miller JH, Jung MK, Northcote PT, Ghosh AK, Curran DP, Cushman M, Nicolaou KC, Paterson I, Sorensen EJ (2006) Synergistic effects of peloruside A and laulimalide with taxoid site drugs, but not with each other, on tubulin assembly. Mol Pharmacol 70:1555–1564

    CAS  PubMed  Google Scholar 

  58. Wilmes A, Bargh K, Kelly C, Northcote PT, Miller JH (2007) Peloruside A synergizes with other microtubule stabilizing agents in cultured cancer cell lines. Mol Pharm 4:269–280

    CAS  PubMed  Google Scholar 

  59. Prakash V, Timasheff SN (1991) Mechanism of interaction of vinca alkaloids with tubulin: catharanthine and vindoline. Biochemistry 30:873–880

    CAS  PubMed  Google Scholar 

  60. Safa AR, Hamel E, Felsted RL (1987) Photoaffinity labeling of tubulin subunits with a photoactive analogue of vinblastine. Biochemistry 26:97–102

    CAS  PubMed  Google Scholar 

  61. Rai SS, Wolff J (1996) Localization of the vinblastine-binding site on beta-tubulin. J Biol Chem 271:14707–14711

    CAS  PubMed  Google Scholar 

  62. Barbier P, Gregoire C, Devred F, Sarrazin M, Peyrot V (2001) In vitro effect of cryptophycin 52 on microtubule assembly and tubulin: molecular modeling of the mechanism of action of a new antimitotic drug. Biochemistry 40:13510–13519

    CAS  PubMed  Google Scholar 

  63. Cormier A, Marchand M, Ravelli RB, Knossow M, Gigant B (2008) Structural insight into the inhibition of tubulin by vinca domain peptide ligands. EMBO Rep 9:1101–1106

    CAS  PubMed  Google Scholar 

  64. Bai RL, Paull KD, Herald CL, Malspeis L, Pettit GR, Hamel E (1991) Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J Biol Chem 266:15882–15889

    CAS  PubMed  Google Scholar 

  65. Schmitt H, Atlas D (1976) Specific affinity labelling of tubulin with bromocolchicine. J Mol Biol 102:743–758

    CAS  PubMed  Google Scholar 

  66. Williams RF, Mumford CL, Williams GA, Floyd LJ, Aivaliotis MJ, Martinez RA, Robinson AK, Barnes LD (1985) A photoaffinity derivative of colchicine: 6′-(4′-azido-2′-nitrophenylamino)hexanoyldeacetylcolchicine. Photolabeling and location of the colchicine-binding site on the alpha-subunit of tubulin. J Biol Chem 260:13794–13802

    CAS  PubMed  Google Scholar 

  67. Grover S, Boye O, Getahun Z, Brossi A, Hamel E (1992) Chloroacetates of 2- and 3-demethylthiocolchicine: specific covalent interactions with tubulin with preferential labeling of the beta-subunit. Biochem Biophys Res Commun 187:1350–1358

    CAS  PubMed  Google Scholar 

  68. Lin CM, Ho HH, Pettit GR, Hamel E (1989) Antimitotic natural products combretastatin A-4 and combretastatin A-2: studies on the mechanism of their inhibition of the binding of colchicine to tubulin. Biochemistry 28:6984–6991

    CAS  PubMed  Google Scholar 

  69. Floyd LJ, Barnes LD, Williams RF (1989) Photoaffinity labeling of tubulin with (2-nitro-4-azidophenyl)deacetylcolchicine: direct evidence for two colchicine binding sites. Biochemistry 28:8515–8525

    CAS  PubMed  Google Scholar 

  70. Wolff J, Knipling L, Cahnmann HJ, Palumbo G (1991) Direct photoaffinity labeling of tubulin with colchicine. Proc Natl Acad Sci USA 88:2820–2824

    CAS  PubMed  Google Scholar 

  71. Uppuluri S, Knipling L, Sackett DL, Wolff J (1993) Localization of the colchicine-binding site of tubulin. Proc Natl Acad Sci USA 90:11598–11602

    CAS  PubMed  Google Scholar 

  72. Bourdron J, Barbier P, Allegro D, Villard C, Lafitte D, Commeiras L, Parrain JL, Peyrot V (2009) Caulerpenyne binding to tubulin: structural modifications by a non conventional pharmacological agent. Med Chem 5:182–190

    CAS  PubMed  Google Scholar 

  73. Lafitte D, Lamour V, Tsvetkov PO, Makarov AA, Klich M, Deprez P, Moras D, Briand C, Gilli R (2002) DNA gyrase interaction with coumarin-based inhibitors: the role of the hydroxybenzoate isopentenyl moiety and the 5′-methyl group of the noviose. Biochemistry 41:7217–7223

    CAS  PubMed  Google Scholar 

  74. Verdier-Pinard P, Gares M, Wright M (1999) Differential in vitro association of vinca alkaloid-induced tubulin spiral filaments into aggregated spirals. Biochem Pharmacol 58:959–971

    CAS  PubMed  Google Scholar 

  75. Lobert S, Fahy J, Hill BT, Duflos A, Etievant C, Correia JJ (2000) Vinca alkaloid-induced tubulin spiral formation correlates with cytotoxicity in the leukemic L1210 cell line. Biochemistry 39:12053–12062

    CAS  PubMed  Google Scholar 

  76. Buey RM, Barasoain I, Jackson E, Meyer A, Giannakakou P, Paterson I, Mooberry S, Andreu JM, Díaz JF (2005) Microtubule interactions with chemically diverse stabilizing agents: thermodynamics of binding to the paclitaxel site predicts cytotoxicity. Chem Biol 12:1269–1279

    CAS  PubMed  Google Scholar 

  77. Diaz JF, Menendez M, Andreu JM (1993) Thermodynamics of ligand-induced assembly of tubulin. Biochemistry 32:10067–10077

    CAS  PubMed  Google Scholar 

  78. Na GC, Timasheff SN (1986) Interaction of vinblastine with calf brain tubulin: multiple equilibria. Biochemistry 25:6214–6222

    CAS  PubMed  Google Scholar 

  79. Fahy J, Duflos A, Ribet JP, Jacquesy JC, Berrier C, Jouannetaud MP, Zunino F (1997) Vinca alkaloids in superacidic media: a method for creating a new family of antitumor derivatives. J Am Chem Soc 119:8576–8577

    CAS  Google Scholar 

  80. Bhattacharyya B, Wolff J (1974) Promotion of fluorescence upon binding of colchicine to tubulin. Proc Natl Acad Sci USA 71:2627–2631

    CAS  PubMed  Google Scholar 

  81. Dustin P (1978) Microtubules. Springer, Berlin

    Google Scholar 

  82. Schlesinger N, Schumacher R, Catton M, Maxwell L (2006) Colchicine for acute gout. Cochrane Database Syst Rev 18:CD006190

    Google Scholar 

  83. Lidar M, Livneh A (2007) Familial Mediterranean fever: clinical, molecular and management advancements. Neth J Med 65:318–324

    CAS  PubMed  Google Scholar 

  84. ter Haar E, Rosenkranz HS, Hamel E, Day BW (1996) Computational and molecular modeling evaluation of the structural basis for tubulin polymerization inhibition by colchicine site agents. Bioorg Med Chem 4:1659–1671

    CAS  PubMed  Google Scholar 

  85. Sun L, Vasilevich NI, Fuselier JA, Coy DH (2004) Abilities of 3, 4-diarylfuran-2-one analogs of combretastatin A-4 to inhibit both proliferation of tumor cell lines and growth of relevant tumors in nude mice. Anticancer Res 24:179–186

    CAS  PubMed  Google Scholar 

  86. Hamel E, Lin CM, Flynn E, D’Amato RJ (1996) Interactions of 2-methoxyestradiol, an endogenous mammalian metabolite, with unpolymerized tubulin and with tubulin polymers. Biochemistry 35:1304–1310

    CAS  PubMed  Google Scholar 

  87. Mabjeesh NJ, Escuin D, LaVallee TM, Pribluda VS, Swartz GM, Johnson MS, Willard MT, Zhong H, Simons JW, Giannakakou P (2003) 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 3:363–375

    CAS  PubMed  Google Scholar 

  88. Verdier-Pinard P, Sitachitta N, Rossi JV, Sackett DL, Gerwick WH, Hamel E (1999) Biosynthesis of radiolabeled curacin A and its rapid and apparently irreversible binding to the colchicine site of tubulin. Arch Biochem Biophys 370:51–58

    CAS  PubMed  Google Scholar 

  89. Wipf P, Reeves JT, Day BW (2004) Chemistry and biology of curacin A. Curr Pharm Des 10:1417–1437

    CAS  PubMed  Google Scholar 

  90. Gu L, Wang B, Kulkarni A, Geders TW, Grindberg RV, Gerwick L, Håkansson K, Wipf P, Smith JL, Gerwick WH, Sherman DH (2009) Metamorphic enzyme assembly in polyketide diversification. Nature 459:731–735

    CAS  PubMed  Google Scholar 

  91. Yang CG, Barasoain I, Li X, Matesanz R, Liu R, Sharom FJ, Yin DL, Díaz JF, Fang WS (2007) Overcoming tumor drug resistance with high-affinity taxanes: a SAR study of C2-modified 7-acyl-10-deacetyl cephalomannines. ChemMedChem 2:691–701

    CAS  PubMed  Google Scholar 

  92. Verdier-Pinard P, Kepler JA, Pettit GR, Hamel E (2000) Sustained intracellular retention of dolastatin 10 causes its potent antimitotic activity. Mol Pharmacol 57:180–187

    CAS  PubMed  Google Scholar 

  93. Hennenfent KL, Govindan R (2006) Novel formulations of taxanes: a review. Old wine in a new bottle? Ann Oncol 17:735–749

    CAS  PubMed  Google Scholar 

  94. Bradley MO, Swindell CS, Anthony FH, Witman PA, Devanesan P, Webb NL, Baker SD, Wolff AC, Donehower RC (2001) Tumor targeting by conjugation of DHA to paclitaxel. J Control Release 74:233–236

    CAS  PubMed  Google Scholar 

  95. Schuch G (2005) EndoTAG-1. MediGene. Curr Opin Investig Drugs 6:1259–1265

    CAS  PubMed  Google Scholar 

  96. Ibrahim NK, Desai N, Legha S, Soon-Shiong P, Theriault RL, Rivera E, Esmaeli B, Ring SE, Bedikian A, Hortobagyi GN, Ellerhorst JA (2002) Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 8:1038–1044

    CAS  PubMed  Google Scholar 

  97. Trieu V, Hwang J, Desai N (2007) Nanoparticle albumin-bound (nab) technology may enhance antitumor activity via targeting of SPARC protein. New targets and delivery system for cancer diagnosis and treatment (SKCC). San Diego, Abstract 53

  98. Faklaris O, Garrot D, Joshi V, Druon F, Boudou JP, Sauvage T, Georges P, Curmi PA, Treussart F (2008) Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. Small 4:2236–2239

    CAS  PubMed  Google Scholar 

  99. Ciofani G, Riggio C, Raffa V, Menciassi A, Cuschieri A (2009) A bi-modal approach against cancer: magnetic alginate nanoparticles for combined chemotherapy and hyperthermia. Med Hypotheses 73:80–82

    CAS  PubMed  Google Scholar 

  100. Rose WC, Long BH, Fairchild CR, Lee FY, Kadow JF (2001) Preclinical pharmacology of BMS-275183, an orally active taxane. Clin Cancer Res 7:2016–2021

    CAS  PubMed  Google Scholar 

  101. Distefano M, Scambia G, Ferlini C, Gaggini C, De Vincenzo R, Riva A, Bombardelli E, Ojima I, Fattorossi A, Panici PB, Mancuso S (1997) Anti-proliferative activity of a new class of taxanes (14beta-hydroxy-10-deacetylbaccatin III derivatives) on multidrug-resistance-positive human cancer cells. Int J Cancer 72:844–850

    CAS  PubMed  Google Scholar 

  102. Mooberry SL, Randall-Hlubek DA, Leal RM, Hegde SG, Hubbard RD, Zhang L, Wender PA (2004) Microtubule-stabilizing agents based on designed laulimalide analogues. Proc Natl Acad Sci USA 101:8803–8808

    CAS  PubMed  Google Scholar 

  103. Shin Y, Fournier JH, Balachandran R, Madiraju C, Raccor BS, Zhu G, Edler MC, Hamel E, Day BW, Curran DP (2005) Synthesis and biological evaluation of (−)-16-normethyldictyostatin: a potent analogue of (−)-dictyostatin. Org Lett 7:2873–2876

    CAS  PubMed  Google Scholar 

  104. Mooberry SL, Tien G, Hernandez AH, Plubrukarn A, Davidson BS (1999) Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res 59:653–660

    CAS  PubMed  Google Scholar 

  105. Hill BT (2001) Vinflunine, a second generation novel Vinca Alkaloid with a distinctive pharmacological profile, now in clinical development and prospects for future mitotic blockers. Curr Pharm Des 7:1199–1212

    CAS  PubMed  Google Scholar 

  106. Wen B, Fitch WL (2009) Analytical strategies for the screening and evaluation of chemically reactive drug metabolites. Expert Opin Drug Metab Toxicol 5:39–55

    CAS  PubMed  Google Scholar 

  107. Vahdat L (2008) Ixabepilone: a novel antineoplastic agent with low susceptibility to multiple tumor resistance mechanisms. Oncologist 13:214–221

    CAS  PubMed  Google Scholar 

  108. Zorza G, Van Heugen JC, De Graeve J, Puozzo C (2007) Development of a sensitive liquid chromatography method coupled with a tandem mass spectrometric detection for the clinical analysis of vinflunine and 4-O-deacetyl vinflunine in blood, urine and faeces. J Chromatogr B Analyt Technol Biomed Life Sci 853:294–302

    CAS  PubMed  Google Scholar 

  109. Kirwan IG, Loadman PM, Swaine DJ, Anthoney DA, Pettit GR, Lippert JW 3rd, Shnyder SD, Cooper PA, Bibby MC (2004) Comparative preclinical pharmacokinetic and metabolic studies of the combretastatin prodrugs combretastatin A4 phosphate and A1 phosphate. Clin Cancer Res 10:1446–1453

    CAS  PubMed  Google Scholar 

  110. Dahllof B, Billstrom A, Cabral F, Hartley-Asp B (1993) Estramustine depolymerizes microtubules by binding to tubulin. Cancer Res 53:4573–4581

    CAS  PubMed  Google Scholar 

  111. Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669–678

    CAS  PubMed  Google Scholar 

  112. Yang YX, Chen ZC, Zhang GY, Yi H, Xiao ZQ (2008) A subcelluar proteomic investigation into vincristine-resistant gastric cancer cell line. J Cell Biochem 104:1010–1021

    CAS  PubMed  Google Scholar 

  113. Oda Y, Owa T, Sato T, Boucher B, Daniels S, Yamanaka H, Shinohara Y, Yokoi A, Kuromitsu J, Nagasu T (2003) Quantitative chemical proteomics for identifying candidate drug targets. Anal Chem 75:2159–2165

    CAS  PubMed  Google Scholar 

  114. Chong PK, Gan CS, Pham TK, Wright PC (2006) Isobaric tags for relative and absolute quantitation (iTRAQ) reproducibility: implication of multiple injections. J Proteome Res 5:1232–1240

    CAS  PubMed  Google Scholar 

  115. Ong SE, Foster LJ, Mann M (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods 29:124–130

    CAS  PubMed  Google Scholar 

  116. Wang G, Wu WW, Zeng W, Chou CL, Shen RF (2006) Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: reproducibility, linearity, and application with complex proteomes. J Proteome Res 5:1214–1223

    CAS  PubMed  Google Scholar 

  117. Zhang J, MacRae TH (1994) Nucleotide dependence and cytoplasmic localization of a 49-kDa microtubule cross-linking protein from the brine shrimp, Artemia. J Biol Chem 269:3053–3062

    CAS  PubMed  Google Scholar 

  118. Burkhart CA, Kavallaris M, Band Horwitz S (2001) The role of beta-tubulin isotypes in resistance to antimitotic drugs. Biochim Biophys Acta 1471:O1–O9

    CAS  PubMed  Google Scholar 

  119. Kavallaris M, Kuo DY, Burkhart CA, Regl DL, Norris MD, Haber M, Horwitz SB (1997) Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 100:1282–1293

    CAS  PubMed  Google Scholar 

  120. Ranganathan S, Benetatos CA, Colarusso PJ, Dexter DW, Hudes GR (1998) Altered beta-tubulin isotype expression in paclitaxel-resistant human prostate carcinoma cells. Br J Cancer 77:562–566

    CAS  PubMed  Google Scholar 

  121. Liu B, Staren ED, Iwamura T, Appert HE, Howard JM (2001) Mechanisms of taxotere-related drug resistance in pancreatic carcinoma. J Surg Res 99:179–186

    CAS  PubMed  Google Scholar 

  122. Liu B, Staren E, Iwamura T, Appert H, Howard J (2001) Taxotere resistance in SUIT Taxotere resistance in pancreatic carcinoma cell line SUIT 2 and its sublines. World J Gastroenterol 7:855–859

    CAS  PubMed  Google Scholar 

  123. Kavallaris M, Tait AS, Walsh BJ, He L, Horwitz SB, Norris MD, Haber M (2001) Multiple microtubule alterations are associated with Vinca alkaloid resistance in human leukemia cells. Cancer Res 61:5803–5809

    CAS  PubMed  Google Scholar 

  124. Dumontet C, Jaffrezou JP, Tsuchiya E, Duran GE, Chen G, Derry WB, Wilson L, Jordan MA, Sikic BI (2004) Resistance to microtubule-targeted cytotoxins in a K562 leukemia cell variant associated with altered tubulin expression and polymerization. Bull Cancer 91:E81–E112

    PubMed  Google Scholar 

  125. Carre M, Andre N, Carles G, Borghi H, Brichese L, Briand C, Braguer D (2002) Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J Biol Chem 277:33664–33669

    CAS  PubMed  Google Scholar 

  126. Cicchillitti L, Penci R, Di Michele M, Filippetti F, Rotilio D, Donati MB, Scambia G, Ferlini C (2008) Proteomic characterization of cytoskeletal and mitochondrial class III beta-tubulin. Mol Cancer Ther 7:2070–2079

    CAS  PubMed  Google Scholar 

  127. Brun V, Masselon C, Garin J, Dupuis A (2009) Isotope dilution strategies for absolute quantitative proteomics. J Proteomics 72:740–749

    CAS  PubMed  Google Scholar 

  128. Freedman H, Huzil JT, Luchko T, Luduena RF, Tuszynski JA (2009) Identification and characterization of an intermediate taxol binding site within microtubule nanopores and a mechanism for tubulin isotype binding selectivity. J Chem Inf Model 49:424–436

    CAS  PubMed  Google Scholar 

  129. Vassal E, Barette C, Fonrose X, Dupont R, Sans-Soleilhac E, Lafanechère L (2006) Miniaturization and validation of a sensitive multiparametric cell-based assay for the concomitant detection of microtubule-destabilizing and microtubule-stabilizing agents. J Biomol Screen 11:377–389

    CAS  PubMed  Google Scholar 

  130. Esquenazi E, Coates C, Simmons L, Gonzalez D, Gerwick WH, Dorrestein PC (2008) Visualizing the spatial distribution of secondary metabolites produced by marine cyanobacteria and sponges via MALDI-TOF imaging. Mol Biosyst 4:562–570

    CAS  PubMed  Google Scholar 

  131. Trim PJ, Henson CM, Avery JL, McEwen A, Snel MF, Claude E, Marshall PS, West A, Princivalle AP, Clench MR (2008) Matrix-assisted laser desorption/ionization-ion mobility separation-mass spectrometry imaging of vinblastine in whole body tissue sections. Anal Chem 80:8628–8634

    CAS  PubMed  Google Scholar 

  132. Luxembourg SL, Mize TH, McDonnell LA, Heeren RM (2004) High-spatial resolution mass spectrometric imaging of peptide and protein distributions on a surface. Anal Chem 76:5339–5344

    CAS  PubMed  Google Scholar 

  133. Piehowski PD, Carado AJ, Kurczy ME, Ostrowski SG, Heien ML, Winograd N, Ewing AG (2008) MS/MS methodology to improve subcellular mapping of cholesterol using TOF-SIMS. Anal Chem 80:8662–8667

    CAS  PubMed  Google Scholar 

  134. Lemaire R, Stauber J, Wisztorski M, Van Camp C, Desmons A, Deschamps M, Proess G, Rudlof I, Woods AS, Day R, Salzet M, Fournier I (2007) Tag-mass: specific molecular imaging of transcriptome and proteome by mass spectrometry based on photocleavable tag. J Proteome Res 6:2057–2067

    CAS  PubMed  Google Scholar 

  135. Lemaire R, Menguellet SA, Stauber J, Marchaudon V, Lucot JP, Collinet P, Farine MO, Vinatier D, Day R, Ducoroy P, Salzet M, Fournier I (2007) Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, Reg alpha fragment, is a new potential ovary cancer biomarker. J Proteome Res 6:4127–4134

    CAS  PubMed  Google Scholar 

  136. Iancu C, Mistry SJ, Arkin S, Wallenstein S, Atweh GF (2001) Effects of stathmin inhibition on the mitotic spindle. J Cell Sci 114:909–916

    CAS  PubMed  Google Scholar 

  137. Alli E, Bash-Babula J, Yang JM, Hait WN (2002) Effect of stathmin on the sensitivity to antimicrotubule drugs in human breast cancer. Cancer Res 62:6864–6869

    CAS  PubMed  Google Scholar 

  138. Alli E, Yang JM, Ford JM, Hait WN (2007) Reversal of stathmin-mediated resistance to paclitaxel and vinblastine in human breast carcinoma cells. Mol Pharmacol 71:1233–1240

    CAS  PubMed  Google Scholar 

  139. Mistry SJ, Bank A, Atweh GF (2007) Synergistic antiangiogenic effects of stathmin inhibition and taxol exposure. Mol Cancer Res 5:773–782

    CAS  PubMed  Google Scholar 

  140. Iancu C, Mistry SJ, Arkin S, Atweh GF (2000) Taxol and anti-stathmin therapy: a synergistic combination that targets the mitotic spindle. Cancer Res 60:3537–3541

    CAS  PubMed  Google Scholar 

  141. Pusztai L (2007) Markers predicting clinical benefit in breast cancer from microtubule-targeting agents. Ann Oncol 18(Suppl 12):xii15–20

    PubMed  Google Scholar 

  142. Martello LA, Verdier-Pinard P, Shen HJ, He L, Torres K, Orr GA, Horwitz SB (2003) Elevated levels of microtubule destabilizing factors in a Taxol-resistant/dependent A549 cell line with an alpha-tubulin mutation. Cancer Res 63:1207–1213

    CAS  PubMed  Google Scholar 

  143. Gigant B, Curmi PA, Martin-Barbey C, Charbaut E, Lachkar S, Lebeau L, Siavoshian S, Sobel A, Knossow M (2000) The 4 A X-ray structure of a tubulin:stathmin-like domain complex. Cell 102:809–816

    CAS  PubMed  Google Scholar 

  144. Steinmetz MO (2007) Structure and thermodynamics of the tubulin–stathmin interaction. J Struct Biol 158:137–147

    CAS  PubMed  Google Scholar 

  145. Alli E, Yang JM, Hait WN (2007) Silencing of stathmin induces tumor-suppressor function in breast cancer cell lines harboring mutant p53. Oncogene 26:1003–1012

    CAS  PubMed  Google Scholar 

  146. King MV, DeVries JL, Pepinsky R (1952) An X-ray diffraction determination of the chemical structure of colchicine. Acta Crystallogr B 5:437

    CAS  Google Scholar 

  147. Devred F, Tsvetkov PO, Barbier P, Allegro D, Horwitz SB, Makarov AA, Peyrot V (2008) Stathmin/Op18 is a novel mediator of vinblastine activity. FEBS Lett 582:2484–2488

    CAS  PubMed  Google Scholar 

  148. Su D, Smith SM, Preti M, Schwartz P, Rutherford TJ, Menato G, Danese S, Ma S, Yu H, Katsaros D (2009) Stathmin and tubulin expression and survival of ovarian cancer patients receiving platinum treatment with and without paclitaxel. Cancer 115:2453–2463

    CAS  PubMed  Google Scholar 

  149. McGrogan BT, Gilmartin B, Carney DN, McCann A (2008) Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 1785:96–132

    CAS  PubMed  Google Scholar 

  150. Peth A, Boettcher JP, Dubiel W (2007) Ubiquitin-dependent proteolysis of the microtubule end-binding protein 1, EB1, is controlled by the COP9 signalosome: possible consequences for microtubule filament stability. J Mol Biol 368:550–563

    CAS  PubMed  Google Scholar 

  151. Makarov AA, Tsvetkov PO, Villard C, Esquieu D, Pourroy B, Fahy J, Braguer D, Peyrot V, Lafitte D (2007) Vinflunine, a novel microtubule inhibitor, suppresses calmodulin interaction with the microtubule-associated protein STOP. Biochemistry 46:14899–14906

    CAS  PubMed  Google Scholar 

  152. He L, Yang CP, Horwitz SB (2001) Mutations in beta-tubulin map to domains involved in regulation of microtubule stability in epothilone-resistant cell lines. Mol Cancer Ther 1:3–10

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lafitte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calligaris, D., Verdier-Pinard, P., Devred, F. et al. Microtubule targeting agents: from biophysics to proteomics. Cell. Mol. Life Sci. 67, 1089–1104 (2010). https://doi.org/10.1007/s00018-009-0245-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0245-6

Keywords

Navigation