Skip to main content

Advertisement

Log in

Use of corneal hysteresis and corneal resistance factor in target intraocular pressure estimation in patients with early primary open-angle glaucoma

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To introduce a new method for estimation of the target intraocular pressure (TIOP) in naïve eyes with early primary open-angle glaucoma (POAG) using corneal hysteresis (CH) and corneal resistance factor (CRF).

Methods

A prospective quasi-experimental study was conducted on naïve 90 eyes of 45 patients who were newly diagnosed with early primary open-angle glaucoma (POAG). They were compared to 72 eyes of 36 normal subjects. The TIOP was determined for each eye. The IOP Goldmann (IOPg), IOP corneal-compensated (IOPcc), CH and CRF were estimated by ocular response analyzer (ORA, Reichert) device. Measurements were taken for each patient prior to treatment and after 1, 3, 6, 9 and 12 months of receiving medications; either monotherapy or combination therapy.

Results

For all patients, there was a significant negative correlation (p < 0.05) between IOP, either IOPg or IOPcc, and CH, while a significant positive relationship (p < 0.05) existed between IOP and CRF. For patients with early POAG, the CH was significantly increased (p ≤ 0.001), while CRF was significantly decreased (p ≤ 0.001) when TIOP was achieved. At IOP levels higher than TIOP, CH value was lower than CRF with a significant negative correlation between them in contrast to controls. This correlation was reversed on reaching TIOP and CH values became higher than CRF similar to controls.

Conclusion

CH, CRF and IOP measured by ORA can be used for TIOP estimation. This provides us with a guide for assessing the effectiveness of medications introduced to patients with POAG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sihota R, Angmo D, Ramaswamy D, Dada T (2018) Simplifying “target” intraocular pressure for different stages of primary open-angle glaucoma and primary angle-closure glaucoma. Indian J Ophthalmol 66:495–505. https://doi.org/10.4103/ijo.IJO_1130_17

    Article  PubMed  PubMed Central  Google Scholar 

  2. Prum BE, Rosenberg LF, Gedde SJ et al (2016) Primary open-angle glaucoma preferred practice pattern® guidelines. Ophthalmology 123:P41–P111

    Article  Google Scholar 

  3. Quaranta L, Riva I, Gerardi C et al (2016) Quality of life in glaucoma: a review of the literature. Adv Ther 33:959–981. https://doi.org/10.1007/s12325-016-0333-6

    Article  PubMed  PubMed Central  Google Scholar 

  4. Parikh RS, Parikh SR, Navin S et al (2008) Practical approach to medical management of glaucoma. Indian J Ophthalmol 56:223–230. https://doi.org/10.4103/0301-4738.40362

    Article  PubMed  PubMed Central  Google Scholar 

  5. Heijl A, Leske MC, Bengtsson B et al (2002) Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol (Chicago, Ill 1960) 120:1268–1279. https://doi.org/10.1001/archopht.120.10.1268

    Article  Google Scholar 

  6. Yaoeda K, Fukushima A, Shirakashi M, Fukuchi T (2016) Comparison of intraocular pressure adjusted by central corneal thickness or corneal biomechanical properties as measured in glaucomatous eyes using noncontact tonometers and the Goldmann applanation tonometer. Clin Ophthalmol 10:829–834. https://doi.org/10.2147/OPTH.S106836

    Article  PubMed  PubMed Central  Google Scholar 

  7. Medeiros FA, Meira-Freitas D, Lisboa R et al (2013) Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology 120:1533–1540. https://doi.org/10.1016/j.ophtha.2013.01.032

    Article  PubMed  Google Scholar 

  8. Brown KE, Congdon NG (2006) Corneal structure and biomechanics: impact on the diagnosis and management of glaucoma. Curr Opin Ophthalmol 17:338–343. https://doi.org/10.1097/01.icu.0000233951.01971.5b

    Article  PubMed  Google Scholar 

  9. Medeiros FA, Weinreb RN (2006) Evaluation of the influence of corneal biomechanical properties on intraocular pressure measurements using the ocular response analyzer. J Glaucoma 15:364–370. https://doi.org/10.1097/01.ijg.0000212268.42606.97

    Article  PubMed  Google Scholar 

  10. Johnson CS, Mian SI, Moroi S et al (2007) Role of corneal elasticity in damping of intraocular pressure. Invest Ophthalmol Vis Sci 48:2540–2544. https://doi.org/10.1167/iovs.06-0719

    Article  PubMed  Google Scholar 

  11. Congdon NG, Broman AT, Bandeen-Roche K et al (2006) Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol 141:868–875. https://doi.org/10.1016/j.ajo.2005.12.007

    Article  PubMed  Google Scholar 

  12. De Moraes CVG, Hill V, Tello C et al (2012) Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. Ophthalmology 141:868–875. https://doi.org/10.1097/IJG.0b013e3182071b92

    Article  Google Scholar 

  13. Park JH, Jun RM, Choi K-R (2015) Significance of corneal biomechanical properties in patients with progressive normal-tension glaucoma. Br J Ophthalmol 99:746–751. https://doi.org/10.1136/bjophthalmol-2014-305962

    Article  PubMed  Google Scholar 

  14. Pillunat KR, Hermann C, Spoerl E, Pillunat LE (2016) Analyzing biomechanical parameters of the cornea with glaucoma severity in open-angle glaucoma. Graefe’s Arch Clin Exp Ophthalmol = Albr von Graefes Arch fur Klin und Exp Ophthalmol 254:1345–1351. https://doi.org/10.1007/s00417-016-3365-3

    Article  Google Scholar 

  15. Sullivan-Mee M, Billingsley SC, Patel AD et al (2008) Ocular response analyzer in subjects with and without glaucoma. Optom Vis Sci 85:463–470. https://doi.org/10.1097/OPX.0b013e3181784673

    Article  PubMed  Google Scholar 

  16. Thomas R, Thomas S, Chandrashekar G (1998) Gonioscopy. Indian J Ophthalmol 46:255–261

    CAS  PubMed  Google Scholar 

  17. Mundial AM (2013) World medical association declaration of Helsinki ethical principles for medical research involving human subjects. JAMA 310:2191–2194. https://doi.org/10.1001/jama.2013.281053

  18. Hodapp E, Parrish R K, Anderson DR (1993) Clinical decisions in Glaucoma. Mosby Company, Maryland Heights, MO, USA

  19. Bengtsson B, Olsson J, Heijl A, Rootzén H (1997) A new generation of algorithms for computerized threshold perimetry, SITA. Acta Ophthalmol Scand 75:368–375. https://doi.org/10.1111/j.1600-0420.1997.tb00392.x

    Article  CAS  PubMed  Google Scholar 

  20. Ayala M, Chen E (2012) Measuring corneal hysteresis: threshold estimation of the waveform score from the ocular response analyzer. Graefe’s Arch Clin Exp Ophthalmol = Albr von Graefes Arch fur Klin und Exp Ophthalmol 250:1803–1806. https://doi.org/10.1007/s00417-012-2053-1

    Article  Google Scholar 

  21. Kaushik S, Pandav SS (2012) Ocular response analyzer. J Curr glaucoma Pract 6:17–19. https://doi.org/10.5005/jp-journals-10008-1103

    Article  PubMed  PubMed Central  Google Scholar 

  22. (2017) Terminology and guidelines for glaucoma. Br J Ophthalmol 4th edition: https://doi.org/10.1136/bjophthalmol-2016-EGSguideline.01

  23. De Moraes CVG, Hill V, Tello C et al (2012) Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. J Glaucoma 21:209–213. https://doi.org/10.1097/IJG.0b013e3182071b92

    Article  PubMed  Google Scholar 

  24. Chandrasekaran S, Uppuluri S, Sadek H et al (2020) Fluctuations of the ocular response analyzer in measuring corneal hysteresis of subjects with and without glaucoma and other systemic conditions. Invest Ophthalmol Vis Sci 61:4710

    Google Scholar 

  25. Ehrlich JR, Haseltine S, Shimmyo M, Radcliffe NM (2010) Evaluation of agreement between intraocular pressure measurements using Goldmann applanation tonometry and Goldmann correlated intraocular pressure by Reichert’s ocular response analyser. Eye (Lond) 24:1555–1560. https://doi.org/10.1038/eye.2010.83

    Article  CAS  Google Scholar 

  26. Deol M, Taylor DA, Radcliffe NM (2015) Corneal hysteresis and its relevance to glaucoma. Curr Opin Ophthalmol 26:96–102. https://doi.org/10.1097/ICU.0000000000000130

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mangouritsas G, Morphis G, Mourtzoukos S, Feretis E (2009) Association between corneal hysteresis and central corneal thickness in glaucomatous and non-glaucomatous eyes. Acta Ophthalmol 87:901–905. https://doi.org/10.1111/j.1755-3768.2008.01370.x

    Article  PubMed  Google Scholar 

  28. Liang L, Zhang R, He L-Y (2019) Corneal hysteresis and glaucoma. Int Ophthalmol 39:1909–1916. https://doi.org/10.1007/s10792-018-1011-2

    Article  PubMed  Google Scholar 

  29. Agarwal DR, Ehrlich JR, Shimmyo M, Radcliffe NM (2012) The relationship between corneal hysteresis and the magnitude of intraocular pressure reduction with topical prostaglandin therapy. Br J Ophthalmol 96:254–257. https://doi.org/10.1136/bjo.2010.196899

    Article  PubMed  Google Scholar 

  30. Tsikripis P, Papaconstantinou D, Koutsandrea C et al (2013) The effect of prostaglandin analogs on the biomechanical properties and central thickness of the cornea of patients with open-angle glaucoma: a 3-year study on 108 eyes. Drug Des Devel Ther 7:1149–1156. https://doi.org/10.2147/DDDT.S50622

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bolívar G, Sánchez-Barahona C, Teus M et al (2015) Effect of topical prostaglandin analogues on corneal hysteresis. Acta Ophthalmol 93:e495–e498. https://doi.org/10.1111/aos.12689

    Article  CAS  PubMed  Google Scholar 

  32. Meda R, Wang Q, Paoloni D et al (2017) The impact of chronic use of prostaglandin analogues on the biomechanical properties of the cornea in patients with primary open-angle glaucoma. Br J Ophthalmol 101:120–125. https://doi.org/10.1136/bjophthalmol-2016-308432

    Article  PubMed  Google Scholar 

  33. Miki A, Medeiros FA, Weinreb RN et al (2014) Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes. Ophthalmology 121:1350–1358. https://doi.org/10.1016/j.ophtha.2014.01.017

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moataz A. Sallam.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethical approval

This study was approved by our National and Institutional Research Ethics Committee (REC) in accordance with the tenets of the Declaration of Helsinki.

Consent to participate

Informed consent was obtained from all individual participants included in the study. Patients who were unwilling to provide an informed consent were excluded from the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sallam, M.A., Elghareib, M.E. Use of corneal hysteresis and corneal resistance factor in target intraocular pressure estimation in patients with early primary open-angle glaucoma. Int Ophthalmol 42, 891–902 (2022). https://doi.org/10.1007/s10792-021-02070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-02070-y

Keywords

Navigation