Skip to main content

Advertisement

Log in

Corneal hysteresis and glaucoma

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To review and summarize the characteristics of corneal hysteresis (CH) and its relationship with glaucoma.

Methods

A PubMed search was carried out using the terms “corneal hysteresis”, “glaucoma”, and “biomechanics”. Up to March 2018, all studies published in English are included in this review.

Results

The value of CH reflects the ability of corneal tissue to absorb and release energy during bidirectional flattening. It is an important biomechanical parameter of the cornea. The CH value of healthy adults is about 11 mmHg. The measurement of CH is reproducible and different. People have different CH values, which are determined by the shape of the individual’s cornea. The study found that all types of glaucoma, including primary open angle glaucoma, angle-closure glaucoma, normal tension glaucoma, congenital glaucoma, binocular asymmetrical glaucoma, CH values are lower than normal people, therefore, CH is therefore a good indicator of glaucoma diagnosis and screening. Lower CH values are associated with thinner retinal nerve fiber layer (RNFL), larger linear cup/disk ratio (LCDR) and degree of optic disc defect. A lower CH value can also result in a lower visual field index. CH and the basic intraocular pressure play a synergistic role in the progression of glaucoma. The study found that CH can change with changes in basic intraocular pressure, means CH increases when intraocular pressure decreases, while the CH decreases conversely when intraocular pressure increases. Most clinical case studies have shown a decrease in CH after LASER refractive surgery. CH has its limitations, such as corneal damage or corneal surgery, but in general, CH is a risk factor for glaucoma progression.

Conclusion

CH is used as a predictor of glaucoma risk and may help to assess the effect of corneal thickness on intraocular pressure. The clinical significance of CH in the diagnosis and efficacy of glaucoma will become more explicit. In the future, CH can also play an important role in the diagnosis and treatment of glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sedaghat MR, Ostadi-Moghadam H et al (2017) Corneal hysteresis and corneal resistance factor in pellucid marginal degeneration. J Curr Ophthalmol 30(1):42–47

    Article  PubMed  PubMed Central  Google Scholar 

  2. Refai TA et al (2015) Correlation between apical protrusion in the Scheimflug imaging and Corneal Hysteresis and Corneal Resistance factor by Ocular Response Analyzer, among refractive non-keratoconic Egyptian patients. Electron Physician 7(6):1394–1398

    PubMed  PubMed Central  Google Scholar 

  3. He M, Wang W, Ding H, Zhong X (2017) Corneal biomechanical properties in high myopia measured by dynamic Scheimpflug imaging technology. Optom Vis Sci 94(12):1074–1080

    Article  PubMed  Google Scholar 

  4. Al-Arfaj K, Yassin SA (2016) Corneal biomechanics in normal Saudi individuals. Saudi J Ophthalmol 30(3):180–184

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dana D, Mihaela C et al (2015) Corneal hysteresis and primary open angle glaucoma. Rom J Ophthalmol 59(4):252–254

    PubMed  PubMed Central  Google Scholar 

  6. Rio-Cristobal A, Martin R (2014) Corneal assessment technologies: current status. Surv Ophthalmol 59(6):599–614

    Article  PubMed  Google Scholar 

  7. Salman AG (2016) Corneal biomechanical and anterior chamber parameters variations after 1-year of transepithelial corneal collagen cross-linking in eyes of children with keratoconus. Middle East Afr J Ophthalmol 23(1):129–134

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ramesh PV, Jha KN, Srikanth K (2017) Comparison of central corneal thickness using anterior segment optical coherence tomography versus ultrasound pachymetry. J Clin Diagn Res 11(8):NC08–NC11

    PubMed  PubMed Central  Google Scholar 

  9. Hussnain SA, Alsberge JB et al (2015) Change in corneal hysteresis over time innormal, glaucomatous and diabetic eyes. Acta Ophthalmol 93(8):e627–e630

    Article  PubMed  Google Scholar 

  10. Castro DP, Prata TS, Lima VC et al (2010) Corneal viscoelasticity differences between diabetic and nondiabetic glaucomatous patients. Glaucoma 19(5):341–343

    Google Scholar 

  11. Schweitzer C, Korobelnik JF (2016) Associations of biomechanical properties of the cornea with environmental and metabolic factors in an elderly population: the ALIENOR study. Invest Ophthalmol Vis Sci 57(4):2003–2011

    Article  CAS  PubMed  Google Scholar 

  12. Anand A, De Moraes CG, Teng CC et al (2010) Corneal hysteresis and visual field asymmetry in open angle glaucoma. Invest Ophthalmol Vis Sci 51(12):6514–6518

    Article  PubMed  Google Scholar 

  13. Hirneiss C, Neubauer AS, Yu A et al (2011) Corneal biomechanics measured with the ocular response analyser in patients with unilateral open-angle glaucoma. Acta Ophthalmol 89(2):e189–e192

    Article  PubMed  Google Scholar 

  14. Chun YS, Shin JH, Park IK (2015) Comparison of rates of change between binocular and monocular visual fields. Invest Ophthalmol Vis Sci 56(1):451–457

    Article  PubMed  Google Scholar 

  15. Dascalescu D et al (2016) The importance of assessing corneal biomechanical properties in glaucoma patients care—a review. Rom J Ophthalmol 60(4):219–225

    PubMed  PubMed Central  Google Scholar 

  16. Chen M, Kueny L, Schwartz AL (2018) The role of corneal hysteresis during the evaluation of patients with possible normal-tension glaucoma. Clin Ophthalmol 12:555–559

    Article  PubMed  PubMed Central  Google Scholar 

  17. Park K, Shin J, Lee J (2018) Relationship between corneal biomechanical properties and structural biomarkers in patients with normal-tension glaucoma: a retrospective study. BMC Ophthalmol 18(1):7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doozandeh A, Yazdani S et al (2017) Corneal profile in primary congenital glaucoma. Acta Ophthalmol 95(7):e575–e581

    Article  PubMed  Google Scholar 

  19. Gatzioufas Z, Labiris G, Stachs O et al (2013) Biomechanical profile of the cornea in primary congenital glaucoma. Acta Ophthalmol 91(1):e29–e34

    Article  PubMed  Google Scholar 

  20. Oner V, Taş M, Ozkaya E, Bulut A (2016) Influence of pterygium on corneal biomechanical properties. Curr Eye Res 41(7):913–916

    Article  PubMed  Google Scholar 

  21. Bagga H, Liu JH, Weinreb RN (2009) Intraocular pressure measurements throughout the 24 h. Curr Opin Ophthalmol 20(2):79–83

    Article  PubMed  Google Scholar 

  22. Deol M, Taylor DA, Radcliffe NM (2015) Corneal hysteresis and its relevance to glaucoma. Curr Opin Ophthalmol 26(2):96–102

    Article  PubMed  PubMed Central  Google Scholar 

  23. Park K, Shin J, Lee J (2018) Relationship between corneal biomechanical properties and structural biomarkers in patients with normal-tension glaucoma: a retrospectivestudy. BMC Ophthalmol 18(1):7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khawaja AP, Chan MP, Broadway DC et al (2014) Corneal biomechanical properties and glaucoma-related quantitative traits in the EPIC-Norfolk Eye Study. Invest Ophthalmol Vis Sci 55(1):117–124

    Article  PubMed  PubMed Central  Google Scholar 

  25. Prata TS, Lima VC, de Moraes CG et al (2011) Factors associated with topographic changes of the optic nerve head induced by acute intraocular pressure reduction in glaucoma patients. Eye (Lond) 25(2):201–207

    Article  CAS  Google Scholar 

  26. Wells AP, Garway-Heath DF, Poostchi A et al (2008) Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci 49(8):3262–3268

    Article  PubMed  Google Scholar 

  27. Congdon NG, Broman AT, Bandeen-Roche K et al (2006) Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol 141(5):868–875

    Article  PubMed  Google Scholar 

  28. Medeiros FA, Meira-Freitas D, Lisboa R et al (2013) Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology 120(8):1533–1540

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chee RI, Silva FQ, Ehrlich JR et al (2013) Agreement of flicker chronoscopy for structural glaucomatous progression detection and factors associated with progression. Am J Ophthalmol 155(6):983–990 e1

    Article  PubMed  Google Scholar 

  30. Neuburger M, Böhringer D, Reinhard T et al (2010) Recovery of corneal hysteresis after reduction of intraocular pressure in chronic primary angle-closure glaucoma. Am J Ophthalmol 149(4):687–688 author reply 688

    Article  PubMed  Google Scholar 

  31. Meda R, Wang Q et al (2017) The impact of chronic use of prostaglandin analogues on the biomechanical properties of the cornea in patients with primary open-angle glaucoma. Br J Ophthalmol 101(2):120–125

    Article  PubMed  Google Scholar 

  32. Bolívar G, Sánchez-Barahona C, Teus M et al (2015) Effect of topical prostaglandin analogues on corneal hysteresis. Acta Ophthalmol 93(6):e495–e498

    Article  CAS  PubMed  Google Scholar 

  33. Pakravan M, Afroozifar M, Yazdani S (2014) Corneal biomechanical changes following trabeculectomy, phaco-trabeculectomy, ahmed glaucoma valve implantation and phacoemulsification. J Ophthalmic Vis Res 9(1):7–13

    PubMed  PubMed Central  Google Scholar 

  34. Agarwal DR, Ehrlich JR, Shimmyo M et al (2012) The relationship between corneal hysteresis and the magnitude of intraocular pressure reduction with topical prostaglandin therapy. Br J Ophthalmol 96(2):254–257

    Article  PubMed  Google Scholar 

  35. Hirneiß C, Sekura K, Brandlhuber U et al (2013) Corneal biomechanics predict the outcome of selective laser trabeculoplasty in medically uncontrolled glaucoma. Graefes Arch Clin Exp Ophthalmol 251(10):2383–2388

    Article  PubMed  Google Scholar 

  36. Arutyunyan LL (2015) Influence of antihypertensive therapy on morphofunctional and biomechanical parameters of eyes. Vestn oftalmol 131(5):61–67

    Article  CAS  PubMed  Google Scholar 

  37. Susanna CN, Diniz-Filho A et al (2018) A prospective longitudinal study to investigate corneal hysteresis as a risk factor for predicting development of glaucoma. Am J Ophthalmol 187:148–152

    Article  PubMed  Google Scholar 

  38. Zhang J (2016) Corneal biomechanics after small-incision lenticule extraction versus Q-value-guided femtosecond laser-assisted in situ keratomileusis. J Curr Ophthalmol 28(4):181–187

    Article  PubMed  PubMed Central  Google Scholar 

  39. Avetisov SE, Mamikonyan VR et al (2016) Intraocular pressure, ocular blood flow, andcorneal biomechanics changes after LASIK surgery for myopia. Vestn oftalmol 132(4):24–28

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Liang.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Zhang, R. & He, LY. Corneal hysteresis and glaucoma. Int Ophthalmol 39, 1909–1916 (2019). https://doi.org/10.1007/s10792-018-1011-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-018-1011-2

Keywords

Navigation