Skip to main content

Advertisement

Log in

Tramadol ameliorates behavioural, biochemical, mitochondrial and histological alterations in ICV-STZ-induced sporadic dementia of Alzheimer’s type in rats

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Alzheimer disease represents a major public health issue with limited therapeutic interventions. We explored the possibility of therapeutic approach by repurposing of tramadol in a sporadic animal model of Alzheimer’s type. Streptozocin (STZ 3 mg/kg; bilaterally) was injected to male SD rats through intracerebroventricular (ICV) route. Drug treatment was started just after streptozocin administration and continued for 3 weeks. The rats were killed on the 21st day following the last behavioral test, and cytoplasmic fractions of the hippocampus and pre-frontal cortex were prepared for the quantification of acetylcholinesterase, oxidative stress parameter, mitochondrial enzymes activity and histological examination. Tramadol (5, 10 and 20 mg/kg, i.p.) was used as a treatment drug, and memantine (10 mg/kg, i.p.) was used as a standard. Tramadol significantly attenuated behavioral, biochemical, mitochondrial and histological alterations at low (5 mg/kg) and intermediate (10 mg/kg) dose, suggesting its neuroprotective potential in ICV-STZ-treated rats. Further, the neuroprotective effect of tramadol (10 mg/kg) was comparable to memantine (10 mg/kg). In conclusion, our results indicate the effectiveness of tramadol in preventing ICV-STZ-induced cognitive impairment as well as mito-oxidative stress. Further, these findings reveal the possibility of MOR agonist as a therapeutic approach for sporadic Alzheimer disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholinesterase

ANOVA:

Analysis of variance

BBB:

Blood brain barrier

BSA:

Bovine serum albumin

CA-1:

Cornus Ammonis-1

DTNB:

5,5′-Dithio-bis-[2-nitrobenzoic acid

EGTA:

Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

GABA-A:

Gamma-aminobutyric acid-A

GSH:

Reduced glutathione

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

i.p.:

Intraperitoneal

ICV-STZ:

Intracerebroventricular-streptozocin

MORs:

Mu-opioid receptors

MDA:

Malondialdehyde

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NAD+:

Nicotinamide adenine dinucleotide

NMDA:

N-Methyl-d-aspartate

NO:

Nitric oxide

NOS:

Nitric oxide synthase

ROS:

Reactive oxygen species

sAD:

Sporadic Alzheimer disease

SDH:

Succinate dehydrogenase

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid reactive substance

TSTQ:

Time spent in target quadrant

References

  • Ansari MA, Scheff SW (2010) Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol 69:155–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  PubMed  CAS  Google Scholar 

  • Ballinger SW (2005) Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med 38:1278–1295

    Article  PubMed  CAS  Google Scholar 

  • Bradford HF, Crowder JM, White EJ (1986) Inhibitory actions of opioid compounds on calcium fluxes and neurotransmitter release from mammalian cerebral cortical slices. Br J Pharmacol 88(1):87–93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown MR, Sullivan PG, Dorenbos KA, Modafferi EA, Geddes JW, Steward O (2004) Nitrogen disruption of synaptoneurosomes: an alternative method to isolate brain mitochondria. J Neurosci Methods 137:299–303

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA et al (1999) Elevated oxidative stress in models of normal brain aging and Alzheimer’s disease. Life Sci 65:1883–1892

    Article  PubMed  CAS  Google Scholar 

  • Chartoff EH, Connery HS (2014) It's MORe exciting than mu: crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system. Front Pharmacol 5:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Correia SC et al (2012) Insulin signaling, glucose metabolism and mitochondria: major players in Alzheimer’s disease and diabetes interrelation. Brain Res 2:64–78

    Article  CAS  Google Scholar 

  • Dhull DK, Bhateja D, Dhull RK, Padi SS (2012) Differential role of cyclooxygenase isozymes on neuronal density in hippocampus CA1 region of intracerebroventricular streptozotocin treated rat brain. J Chem Neuroanat 43:48–51

    Article  PubMed  CAS  Google Scholar 

  • Ding YQ, Kaneko T, Nomura S, Mizuno N (1996) Immunohistochemical localization of mu-opioid receptors in the central nervous system of the rat. J Comp Neurol 367(3):375–402

    Article  PubMed  CAS  Google Scholar 

  • Eckert A, Schmitt K, Götz J (2011) Mitochondrial dysfunction—the beginning of the end in Alzheimer’s disease? Separate and synergistic modes of tau and amyloid-β toxicity. Alzheimers Res Ther 3:15. https://doi.org/10.1186/alzrt74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Hamid Mohamed Elwy A, Tabl G (2017) Impact of tramadol and morphine abuse on the activities of acetylcholine esterase, Na +/K + —ATPase and related parameters in cerebral cortices of male adult rats. Electron Phys 9:4027–4034

    Article  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Faria J, Barbosa J, Queiros O, Moreira R, Carvalho F, Dinis-Oliveira RJ (2016) Comparative study of the neurotoxicological effects of tramadol and tapentadol in SH-SY5Y cells. Toxicology 360:1–10

    Article  CAS  Google Scholar 

  • Frossi B, Tell G, Spessotto P, Colombatti A, Vitale G, Pucillo C (2002) H(2)O(2) induces translocation of APE/Ref-1 to mitochondria in the Raji B-cell line. J Cell Physiol 193:180–186

    Article  PubMed  CAS  Google Scholar 

  • Garzón J, Rodríguez-Muñoz M, Sánchez-Blázquez P (2012) Direct association of Mu-opioid and NMDA glutamate receptors supports their cross-regulation: molecular implications for opioid tolerance. Curr Drug Abuse Rev 5(3):199–226

    Article  PubMed  Google Scholar 

  • Gibson GE, Shi Q (2010) A mitocentric view of Alzheimer’s disease suggests multi-faceted treatments. J Alzheimer’s Dis JAD 20:2010–100336

    Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    PubMed  CAS  Google Scholar 

  • Grammas P (2011) Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer’s disease. J Neuroinflammation 8:1742–2094

    Article  CAS  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N]nitrate in biological fluids. Anal Biochem 126:131–138

    Article  PubMed  CAS  Google Scholar 

  • Grond S, Sablotzki A (2004) Clinical pharmacology of tramadol. Clin Pharmacokinet 43:879–923

    Article  PubMed  CAS  Google Scholar 

  • Grunblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101:757–770

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Minami K, Sata T (2005) The effects of tramadol and its metabolite on glycine, gamma-aminobutyric acidA, and N-methyl-d-aspartate receptors expressed in Xenopus oocytes. Anesth Analg 100:1400–1405

    Article  PubMed  CAS  Google Scholar 

  • Hartrick CT, Rozek RJ (2011) Tapentadol in pain management: a mu-opioid receptor agonist and noradrenaline reuptake inhibitor. CNS Drugs 25:359–370

    Article  PubMed  CAS  Google Scholar 

  • Hosseini-Sharifabad A, Rabbani M, Sharifzadeh M, Bagheri N (2016) Acute and chronic tramadol administration impair spatial memory in rat. Res Pharm Sci 11(1):49–57

    PubMed  PubMed Central  Google Scholar 

  • Hoyer S (1995) Age-related changes in cerebral oxidative metabolism. Implications for drug therapy. Drugs Aging 6:210–218

    Article  PubMed  CAS  Google Scholar 

  • Javed H et al (2012) Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience 210:340–352

    Article  PubMed  CAS  Google Scholar 

  • Kahn LH, Alderfer RJ, Graham DJ (1997) Seizures reported with tramadol. JAMA 278(20):1661

    Article  PubMed  CAS  Google Scholar 

  • King TE (1967) Preparation of succinate dehydrogenase and reconstitution of succinate oxidase. In: Estabrook R, Pullman M (eds) Methods in enzymology. Academic, New York, pp 322–331

    Google Scholar 

  • King TE, Howard RL (1967) Preparations and properties of soluble NADH dehydrogenases from cardiac muscle. In: Estabrook R, Pullman M (eds) Methods in enzymology. Academic, New York, pp 275–294

    Google Scholar 

  • King’s College London (2015) WAR. The global impact of dementia

  • Kitamura A, Higuchi K, Okura T, Deguchi Y (2014) Transport characteristics of tramadol in the blood-brain barrier. J Pharm Sci 103:3335–3341

    Article  PubMed  CAS  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Ekavali, Mishra J, Chopra K, Dhull DK (2016) Possible role of P-glycoprotein in the neuroprotective mechanism of berberine in intracerebroventricular streptozotocin-induced cognitive dysfunction. Psychopharmacology 233:137–152

    Article  PubMed  CAS  Google Scholar 

  • Lazarov O, Marr RA (2010) Neurogenesis and Alzheimer’s disease: at the crossroads. Exp Neurol 223:267–281

    Article  PubMed  CAS  Google Scholar 

  • Lehmann KA (1997) Tramadol in acute pain. Drugs 2:25–33

    Article  Google Scholar 

  • Liao D, Lin H, Law PY, Loh HH (2005) Mu-opioid receptors modulate the stability of dendritic spines. Proc Natl Acad Sci U S A 102(5):1725–1730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao D, Grigoriants OO, Loh HH, Law PY (2007) Agonist-dependent postsynaptic effects of opioids on miniature excitatory postsynaptic currents in cultured hippocampal neurons. J Neurophysiol 97(2):1485–1494

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Peterson DA, Kimura H, Schubert D (1997) Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 69:581–593

    Article  PubMed  CAS  Google Scholar 

  • Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H, Watson SJ (1994) Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 350(3):412–438

    Article  PubMed  CAS  Google Scholar 

  • Martin G, Nie Z, Siggins GR (1997) mu-Opioid receptors modulate NMDA receptor-mediated responses in nucleus accumbens neurons. J Neurosci 17(1):11–22

    Article  PubMed  CAS  Google Scholar 

  • Mehla J, Pahuja M, Gupta YK (2013) Streptozotocin-induced sporadic Alzheimer’s disease: selection of appropriate dose. J Alzheimer’s Dis JAD 33:17–21

    Article  CAS  Google Scholar 

  • Mintzer MZ, Lanier RK, Lofwall MR, Bigelow GE, Strain EC (2010) Effects of repeated tramadol and morphine administration on psychomotor and cognitive performance in opioid-dependent volunteers. Drug Alcohol Depend 111:265–268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morales I, Guzman-Martinez L, Cerda-Troncoso C, Farias GA, Maccioni RB (2014) Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci 8:112

    PubMed  PubMed Central  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  PubMed  CAS  Google Scholar 

  • Ostermeier AM, Schlösser B, Schwender D, Sutor B (2000) Activation of mu- and delta-opioid receptors causes presynaptic inhibition of glutamatergic excitation in neocortical neurons. Anesthesiology 93(4):1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Pagani L, Eckert A (2011) Amyloid-Beta interaction with mitochondria. Int J Alzheimers Dis 2011:925050. https://doi.org/10.4061/2011/925050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandanaboina SC, Rajbanshi SL, Kunala PN, Pandanaboina S, Pandanaboina MM, Gopalreddy V, Wudayagiri R (2012) Tramadol safety—cholinergic system of rat brain without nociception. Acta Pol Pharm 69:833–841

    PubMed  CAS  Google Scholar 

  • Paxinos GWC (1986) The rat brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Prince M (2015) World Alzheimer's Report-2015. The Global Impact of Dementia. https://www.alz.co.uk/research/world-report-2015. Accessed 12 July 2017

  • Raffa RB, Stone DJ Jr (2008) Unexceptional seizure potential of tramadol or its enantiomers or metabolites in mice. J Pharmacol Exp Ther 325:500–506

    Article  PubMed  CAS  Google Scholar 

  • Sbrenna S, Marti M, Morari M, Calo G, Guerrini R, Beani L, Bianchi C (1999) L-glutamate and gamma-aminobutyric acid efflux from rat cerebrocortical synaptosomes: modulation by kappa- and mu- but not delta- and opioid receptor like-1 receptors. J Pharmacol Exp Ther 291(3):1365–1371

    PubMed  CAS  Google Scholar 

  • Salkovic-Petrisic M, Hoyer S (2007) Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. J Neural Transm Suppl 72:217–233

    Article  CAS  Google Scholar 

  • Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P (2006) Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 96:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Scott LJ, Perry CM (2000) Tramadol: a review of its use in perioperative pain. Drugs 60:139–176

    Article  PubMed  CAS  Google Scholar 

  • Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shoham S, Bejar C, Kovalev E, Weinstock M (2003) Intracerebroventricular injection of streptozotocin causes neurotoxicity to myelin that contributes to spatial memory deficits in rats. Exp Neurol 184:1043–1052

    Article  PubMed  CAS  Google Scholar 

  • Shoham S, Bejar C, Kovalev E, Schorer-Apelbaum D, Weinstock M (2007) Ladostigil prevents gliosis, oxidative-nitrative stress and memory deficits induced by intracerebroventricular injection of streptozotocin in rats. Neuropharmacology 52:836–843

    Article  PubMed  CAS  Google Scholar 

  • Smith-Swintosky VL, Mattson MP (1994) Glutamate, beta-amyloid precursor proteins, and calcium mediated neurofibrillary degeneration. J Neural Transm Suppl 44:29–45

    PubMed  CAS  Google Scholar 

  • Sofic E, Salkovic-Petrisic M, Tahirovic I, Sapcanin A, Mandel S, Youdim M, Riederer P (2015) Brain catalase in the streptozotocin-rat model of sporadic Alzheimer’s disease treated with the iron chelator-monoamine oxidase inhibitor, M30. J Neural Transm 122:559–564

    Article  PubMed  CAS  Google Scholar 

  • Sottocasa GL, Kuylenstierna B, Ernster L, Bergstrand A (1967) An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol 32:415–438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swerdlow RH (2011) Brain aging, Alzheimer’s disease, and mitochondria. Biochim Biophys Acta 12:2

    Google Scholar 

  • Tahirovic I et al (2007) Reduced brain antioxidant capacity in rat models of betacytotoxic-induced experimental sporadic Alzheimer’s disease and diabetes mellitus. Neurochem Res 32:1709–1717

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Su B, Zheng L, Perry G, Smith MA, Zhu X (2009) The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Neurochem 1:153–159

    Article  CAS  Google Scholar 

  • Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 8:1

    CAS  Google Scholar 

  • Wills ED (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99:667–676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang TT, Hung CF, Lee YJ, Su MJ, Wang SJ (2004) Morphine inhibits glutamate exocytosis from rat cerebral cortex nerve terminals (synaptosomes) by reducing Ca2+ influx. Synapse 51(2):83–90

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Pan ZZ (2004) Synaptic properties and postsynaptic opioid effects in rat central amygdala neurons. Neuroscience 127(4):871–879

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Pan ZZ (2005) Mu-opioid-mediated inhibition of glutamate synaptic transmission in rat central amygdala neurons. Neuroscience 133(1):97–103

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Raina AK, Lee HG, Casadesus G, Smith MA, Perry G (2004) Oxidative stress signalling in Alzheimer’s disease. Brain Res 12:1–2

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank the financial support of Council of Scientific and Industrial Research (09/135/705/2014- EMR-I), New Delhi, India, for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhull, D.K., Kumar, A. Tramadol ameliorates behavioural, biochemical, mitochondrial and histological alterations in ICV-STZ-induced sporadic dementia of Alzheimer’s type in rats. Inflammopharmacol 26, 925–938 (2018). https://doi.org/10.1007/s10787-017-0431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-017-0431-3

Keywords

Navigation