Skip to main content

Advertisement

Log in

The multiple faces of CCL13 in immunity and inflammation

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

CCL13/MCP-4, is a CC family chemokine that is chemoattractant for eosinophils, basophils, monocytes, macrophages, immature dendritic cells, and T cells, and its capable of inducing crucial immuno-modulatory responses through its effects on epithelial, muscular and endothelial cells. Similar to other CC chemokines, CCL13 binds to several chemokine receptors (CCR1, CCR2 and CCR3), allowing it to elicit different effects on its target cells. A number of studies have shown that CCL13 is involved in many chronic inflammatory diseases, in which it functions as a pivotal molecule involved in the selective recruitment of cell lineages to the inflamed tissues and their subsequent activation. Based on these studies, we suggest that blocking the actions of CCL13 can serve as a novel strategy for the generation of agents with anti-inflammatory activity. The main goal of this review is to present the current information about CCL13, its gene and protein structure and the roles of this chemokine during innate/adaptive immune responses in inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen SJ, Crown SE, Handel TM (2007) Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol 25:787–820. doi:10.1146/annurev.immunol.24.021605.090529

    Article  PubMed  CAS  Google Scholar 

  • Barinka C, Prahl A, Lubkowski J (2008) Structure of human monocyte chemoattractant protein 4 (MCP-4/CCL13). Acta Crystallogr D Biol Crystallogr 64(Pt 3):273–278

    Article  PubMed  CAS  Google Scholar 

  • Benítez-Hernández I (2010) Proteolytic cleavage of chemokines by Trypanosoma cruzi’s cruzipain inhibits chemokine functions by promoting the generation of antagonists. Immunobiology 215(5):413–426. doi:10.1016/j.imbio.2009.06.001

    Article  PubMed  Google Scholar 

  • Blease K, Mehrad B, Standiford TJ, Lukacs NW, Kunkel SL, Chensue SW, Lu B et al (2000) Airway remodeling is absent in CCR1-/- mice during chronic fungal allergic airway disease. J Immunology (Baltimore, Md.: 1950) 165(3):1564–1572

    CAS  Google Scholar 

  • Carpenter KJ, Ewing JL, Schuh JM, Ness TL, Kunkel SL, Aparici M, Miralpeix M et al (2005) Therapeutic targeting of CCR1 attenuates established chronic fungal asthma in mice. Br J Pharmacol 145(8):1160–1172. doi:10.1038/sj.bjp.0706243

    Article  PubMed  CAS  Google Scholar 

  • Carroll K. N, Hartert T. V (2008) The impact of respiratory viral infection on wheezing illnesses and asthma exacerbations. Immunol Allergy clini of North Am 28(3):539–61, viii. doi:10.1016/j.iac.2008.03.001

  • Caux C, Ait-Yahia S, Chemin K, De Bouteiller O, Dieu-Nosjean MC, Homey B, Massacrier C et al (2000) Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin Immunopathol 22(4):345–369

    Article  PubMed  CAS  Google Scholar 

  • Chiu B-C, Freeman CM, Stolberg VR, Hu JS, Zeibecoglou K, Lu B, Gerard C et al (2004) Impaired lung dendritic cell activation in CCR2 knockout mice. Am J Pathol 165(4):1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Christodoulopoulos P, Wright E, Frenkiel S, Luster A, Hamid Q (1999) Monocyte chemotactic proteins in allergen-induced inflammation in the nasal mucosa: effect of topical corticosteroids. J Allergy Clin Immunol 103(6):1036–1044

    Google Scholar 

  • Cohn L, Elias JA, Chupp GL (2004) Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol 22:789–815. doi:10.1146/annurev.immunol.22.012703.104716

    Article  PubMed  CAS  Google Scholar 

  • Dean RA, Cox JH, Bellac CL, Doucet A, Starr AE, Overall CM (2008) Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR + CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. Blood 112(8):3455–3464

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa T, Kato Y, Nagase H, Atsuta J, Terada A, Iguchi K, Kamiya H et al (2000) Chemokines induce eosinophil degranulation through CCR-3. J Allergy Clin Immunol 106(3):507–513. doi:10.1067/mai.2000.108311

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Zepeda EA, Combadiere C, Rothenberg ME, Sarafi MN, Lavigne F, Hamid Q, Murphy PM et al (1996) Human monocyte chemoattractant protein (MCP)-4 is a novel CC chemokine with activities on monocytes, eosinophils, and basophils induced in allergic and nonallergic inflammation that signals through the CC chemokine receptors (CCR)-2 and -3. J Immunol 157(12):5613–5626

    PubMed  CAS  Google Scholar 

  • Godiska R, Chantry D, Raport CJ, Schweickart VL, Trong HL, Gray PW (1997) Monocyte chemotactic protein-4: tissue-specific expression and signaling through CC chemokine receptor-2. J Leukoc Biol 61(3):353–360

    PubMed  CAS  Google Scholar 

  • Hashimoto I, Wada J, Hida A, Baba M, Miyatake N, Eguchi J, Shikata K et al (2006) Elevated serum monocyte chemoattractant protein-4 and chronic inflammation in overweight subjects. Obesity (Silver Spring, Md.) 14(5):799–811. doi:10.1038/oby.2006.93

    Article  CAS  Google Scholar 

  • Hein H, Schlüter C, Kulke R, Christophers E, Schröder JM, Bartels J, Schluter C et al (1999) Genomic organization, sequence analysis and transcriptional regulation of the human MCP-4 chemokine gene (SCYA13) in dermal fibroblasts: a comparison to other eosinophilic beta-chemokines. Biochem Biophys Res Commun 255(2):470–476. doi:10.1006/bbrc.1999.0216

    Article  PubMed  CAS  Google Scholar 

  • Hintzen C, Quaiser S, Pap T, Heinrich PC, Hermanns HM (2009) Induction of CCL13 expression in synovial fibroblasts highlights a significant role of oncostatin M in rheumatoid arthritis. Arthritis Rheum. doi:10.1002/art.24602

    PubMed  Google Scholar 

  • Iwamoto T, Okamoto H, Iikuni N, Takeuchi M, Toyama Y, Tomatsu T, Kamatani N et al (2006) Monocyte chemoattractant protein-4 (MCP-4)/CCL13 is highly expressed in cartilage from patients with rheumatoid arthritis. Rheumatology (Oxford) 45(4):421–424. doi:10.1093/rheumatology/kei209

    Article  CAS  Google Scholar 

  • Iwamoto T, Okamoto H, Kobayashi S, Ikari K, Toyama Y, Tomatsu T, Kamatani N et al (2007) A role of monocyte chemoattractant protein-4 (MCP-4)/CCL13 from chondrocytes in rheumatoid arthritis. FEBS J 274(18):4904–4912

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto Takuji, Okamoto H, Toyama Y, Momohara S (2008) Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J 275(18):4448–4455. doi:10.1111/j.1742-4658.2008.06580.x

    Article  PubMed  CAS  Google Scholar 

  • Joubert P, Lajoie-Kadoch S, Labonté I, Gounni AS, Maghni K, Wellemans V, Chakir J et al (2005) CCR3 expression and function in asthmatic airway smooth muscle cells. J Immunol (Baltimore, Md.: 1950) 175(4):2702–2708

    CAS  Google Scholar 

  • Joubert P, Lajoie-Kadoch S, Welman M, Dragon S, Létuvée S, Tolloczko B, Halayko AJ et al (2008) Expression and regulation of CCR1 by airway smooth muscle cells in asthma. J Immunol (Baltimore, Md.: 1950) 180(2):1268–1275

    CAS  Google Scholar 

  • Kalayci O, Birben E, Wu L, Oguma T, Storm Van’s Gravesande K, Subramaniam V, Sheldon HK et al (2003) Monocyte chemoattractant protein-4 core promoter genetic variants: influence on YY-1 affinity and plasma levels. Am J Respir Cell Mole Biol 29(6):750–756. doi:10.1165/rcmb.2003-0024OC

    Article  CAS  Google Scholar 

  • Kalayci O, Sonna LA, Woodruff PG, Camargo CA Jr, Luster AD, Lilly CM, Camargo CA (2004) Monocyte chemotactic protein-4 (MCP-4; CCL-13): a biomarker of asthma. J Asthma 41(1):27–33

    Article  PubMed  CAS  Google Scholar 

  • Kampen GT, Stafford S, Adachi T, Jinquan T, Quan S, Grant JA, Skov PS et al (2000) Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases. Blood 95(6):1911–1917

    PubMed  CAS  Google Scholar 

  • Koenen RR, Weber C (2010) Therapeutic targeting of chemokine interactions in atherosclerosis. Nat Rev Drug Discov 9(2):141–153. doi:10.1038/nrd3048

    Article  PubMed  CAS  Google Scholar 

  • Kohan M, Puxeddu I, Reich R, Levi-Schaffer F, Berkman N (2010) Eotaxin-2/CCL24 and eotaxin-3/CCL26 exert differential profibrogenic effects on human lung fibroblasts. Annals Allergy Asthma Immunol 104(1):66–72

    Article  CAS  Google Scholar 

  • Lagu B, Gerchak C, Pan M, Hou C, Singer M, Malaviya R, Matheis M et al (2007) Potent and selective CC-chemokine receptor-2 (CCR2) antagonists as a potential treatment for asthma. Bioorg Med Chem Lett 17(15):4382–4386. doi:10.1016/j.bmcl.2007.01.115

    Article  PubMed  CAS  Google Scholar 

  • Lambrecht BN, Hammad H (2012) The airway epithelium in asthma. Nat Med 18(5):684–692. doi:10.1038/nm.2737

    Article  PubMed  CAS  Google Scholar 

  • Lamkhioued B, Garcia-Zepeda EA, Abi-Younes S, Nakamura H, Jedrzkiewicz S, Wagner L, Renzi PM et al (2000) Monocyte chemoattractant protein (MCP)-4 expression in the airways of patients with asthma. Induction in epithelial cells and mononuclear cells by proinflammatory cytokines. Am J Respir Crit Care Med 162(2 Pt 1):723–732

    Article  PubMed  CAS  Google Scholar 

  • Luster AD (1998) Chemokines–chemotactic cytokines that mediate inflammation. New Engl J Med 338(7):436–445

    Article  PubMed  CAS  Google Scholar 

  • Luster AD, Rothenberg ME (1997) Role of the monocyte chemoattractant protein and eotaxin subfamily of chemokines in allergic inflammation. J Leukoc Biol 62(5):620–633

    PubMed  CAS  Google Scholar 

  • Maho A, Carter A, Bensimon A, Vassart G, Parmentier M (1999) Physical mapping of the CC-chemokine gene cluster on the human 17q11. 2 region. Genomics 59(2):213–223. doi:10.1006/geno.1999.5850

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Becerra F, Silva DA, Dominguez-Ramirez L, Mendoza-Hernandez G, Lopez-Vidal Y, Soldevila G, Garcia-Zepeda EA (2007) Analysis of the antimicrobial activities of a chemokine-derived peptide (CDAP-4) on Pseudomonas aeruginosa. Biochem Biophys Res Commun 355(2):352–358

    Article  PubMed  CAS  Google Scholar 

  • McQuibban GA, Gong J-H, Wong JP, Wallace JL, Clark-Lewis I, Overall CM (2002) Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100(4):1160–1167

    PubMed  CAS  Google Scholar 

  • Mendez-Enriquez E, Melendez Y, Martinez F, Baay G, Huerta-Yepez S, Gonzalez-Bonilla C, Fortoul TI et al (2008) CDIP-2, a synthetic peptide derived from chemokine (C–C motif) ligand 13 (CCL13), ameliorates allergic airway inflammation. Clin Exp Immunol 152(2):354–363

    Article  PubMed  CAS  Google Scholar 

  • Nakajima H, Iwamoto I (2005) Pathogenesis of asthma. Nippon Rinsho 63 Suppl 5(6):53–57

    PubMed  Google Scholar 

  • Nakamura H, Luster AD, Tateno H, Jedrzkiewicz S, Tamura G, Haley KJ, Garcia-Zepeda EA et al (2001) IL-4 differentially regulates eotaxin and MCP-4 in lung epithelium and circulating mononuclear cells. Am J Physiol Lung Cell Mol Physiol 281(5):L1288–L1302

    PubMed  CAS  Google Scholar 

  • Nonaka M, Fukumoto A, Ogihara N, Pawankar R, Sakanushi A, Yagi T (2007) Expression of MCP-4 by TLR ligand-stimulated nasal polyp fibroblasts. Acta Otolaryngol 127(12):1304–1309. doi:10.1080/00016480701242444

    Google Scholar 

  • Ockinger J, Stridh P, Beyeen AD, Lundmark F, Seddighzadeh M, Oturai A, Sorensen PS et al (2009) Genetic variants of CC chemokine genes in experimental autoimmune encephalomyelitis, multiple sclerosis and rheumatoid arthritis. Genes Immun 11(2):142–154

    Article  PubMed  Google Scholar 

  • Osterholzer JJ, Ames T, Polak T, Sonstein J, Moore BB, Chensue SW, Toews GB et al (2005) CCR2 and CCR6, but not endothelial selectins, mediate the accumulation of immature dendritic cells within the lungs of mice in response to particulate antigen. J Immunol (Baltimore, MD.: 1950) 175(2):874–883

    CAS  Google Scholar 

  • Pease JE (2011) Targeting chemokine receptors in allergic disease. Biochem J 434(1):11–24. doi:10.1042/BJ20101132

    Article  PubMed  CAS  Google Scholar 

  • Pease JE, Horuk R (2010) Small molecule antagonists of chemokine receptors–is promiscuity a virtue? Curr Top Med Chem 10(13):1351–1358

    Article  PubMed  CAS  Google Scholar 

  • Pertuz Belloso S, Ostoa Saloma P, Benitez I, Soldevila G, Olivos A, Garcia-Zepeda E (2004) Entamoeba histolytica cysteine protease 2 (EhCP2) modulates leucocyte migration by proteolytic cleavage of chemokines. Parasite Immunol 26(5):237–241

    Article  PubMed  CAS  Google Scholar 

  • Pigard N, Elovaara I, Kuusisto H, Paalavuo R, Dastidar P, Zimmermann K, Schwarz H-P et al (2009) Therapeutic activities of intravenous immunoglobulins in multiple sclerosis involve modulation of chemokine expression. J Neuroimmunol 209(1–2):114–120. doi:10.1016/j.jneuroim.2009.01.014

    Article  PubMed  CAS  Google Scholar 

  • Pype JL, Dupont LJ, Menten P, Van Coillie E, Opdenakker G, Van Damme J, Chung KF et al (1999) Expression of monocyte chemotactic protein (MCP)-1, MCP-2, and MCP-3 by human airway smooth-muscle cells. Modulation by corticosteroids and T-helper 2 cytokines. Am J Respir Cell Mol Biol 21(4):528–536

    Article  PubMed  CAS  Google Scholar 

  • Rossi L, Moharram R, Martin BM, White RL, Panelli MC (2006) Detection of human MCP-4/CCL13 isoforms by SELDI immunoaffinity capture. J Transl Med 4:5

    Article  PubMed  Google Scholar 

  • Santiago J, Hernández-Cruz JL, Manjarrez-Zavala ME, Montes-Vizuet R, Rosete-Olvera DP, Tapia-Díaz AM, Zepeda-Peney H et al (2008) Role of monocyte chemotactic protein-3 and -4 in children with virus exacerbation of asthma. The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology 32(5):1243–1249. doi:10.1183/09031936.00085107

    Article  CAS  Google Scholar 

  • Sartipy P, Loskutoff DJ (2003) Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA 100(12):7265–7270. doi:10.1073/pnas.1133870100

    Article  PubMed  CAS  Google Scholar 

  • Sato W, Aranami T, Yamamura T (2007) Cutting edge: Human Th17 cells are identified as bearing CCR2 + CCR5- phenotype. J Immunol (Baltimore, MD.: 1950) 178(12):7525–7529

    CAS  Google Scholar 

  • Schober A, Zernecke A, Liehn EA, Von Hundelshausen P, Knarren S, Kuziel WA, Weber C (2004) Crucial role of the CCL2/CCR2 axis in neointimal hyperplasia after arterial injury in hyperlipidemic mice involves early monocyte recruitment and CCL2 presentation on platelets. Circ Res 95(11):1125–1133. doi:10.1161/01.RES.0000149518.86865.3e

    Article  PubMed  CAS  Google Scholar 

  • Sheikine Y, Hansson GK (2004) Chemokines and atherosclerosis. Ann Med 36(2):98–118

    Article  PubMed  CAS  Google Scholar 

  • Stellato C, Collins P, Ponath PD, Soler D, Newman W, La Rosa G, Li H et al (1997) Production of the novel C–C chemokine MCP-4 by airway cells and comparison of its biological activity to other C–C chemokines. J Clin Invest 99(5):926–936. doi:10.1172/JCI119257

    Article  PubMed  CAS  Google Scholar 

  • Tenscher K, Metzner B, Hofmann C, Schopf E, Norgauer J, Schöpf E (1997) The monocyte chemotactic protein-4 induces oxygen radical production, actin reorganization, and CD11b up-regulation via a pertussis toxin-sensitive G-protein in human eosinophils. Biochem Biophys Res Commun 240(1):32–35. doi:10.1006/bbrc.1997.7601

    Article  PubMed  CAS  Google Scholar 

  • Uguccioni M, Loetscher P, Forssmann U, Dewald B, Li H, Lima SH, Li Y et al (1996) Monocyte chemotactic protein 4 (MCP-4), a novel structural and functional analogue of MCP-3 and eotaxin. J Exp Med 183(5):2379–2384

    Article  PubMed  CAS  Google Scholar 

  • Vaidehi N, Schlyer S, Trabanino RJ, Floriano WB, Abrol R, Sharma S, Kochanny M et al (2006) Predictions of CCR1 chemokine receptor structure and BX 471 antagonist binding followed by experimental validation. J Biol Chem 281(37):27613–27620. doi:10.1074/jbc.M601389200

    Article  PubMed  CAS  Google Scholar 

  • Van Coillie E, Van Damme J, Opdenakker G (1999) The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev 10(1):61–86

    Article  PubMed  Google Scholar 

  • Vanbervliet B, Homey B, Durand I, Massacrier C, Aït-Yahia S, De Bouteiller O, Vicari A et al (2002) Sequential involvement of CCR2 and CCR6 ligands for immature dendritic cell recruitment: possible role at inflamed epithelial surfaces. Eur J Immunol 32(1):231–242. doi:10.1002/1521-4141(200201)32:1<231:AID-IMMU231>3.0.CO;2-8

    Article  PubMed  CAS  Google Scholar 

  • Viola A, Luster AD (2008) Chemokines and their receptors: drug targets in immunity and inflammation. Annu Rev Pharmacol Toxicol 48:171–197. doi:10.1146/annurev.pharmtox.48.121806.154841

    Article  PubMed  CAS  Google Scholar 

  • White GE, Iqbal AJ, Greaves DR (2013) CC Chemokine Receptors and Chronic Inflammation–Therapeutic Opportunities and Pharmacological Challenges. Pharmacol Rev 65(1):47–89. doi:10.1124/pr.111.005074

    Article  PubMed  CAS  Google Scholar 

  • Breland UM, Michelsen AE, Skjelland M, Folkersen L, Krohg-Sørensen K, Russell D, Ueland T et al (2010) Raised MCP-4 levels in symptomatic carotid atherosclerosis: an inflammatory link between platelet and monocyte activation. Cardiovascular research 86(2):265–273. doi:10.1093/cvr/cvq044

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi A, Nozawa K, Fujishiro M, Kawasaki M, Suzuki F, Takamori K, Ogawa H et al (2012a) CC motif chemokine ligand 13 is associated with rheumatoid arthritis pathogenesis. Modern Rheumatol. doi:10.1007/s10165-012-0752-4

    Google Scholar 

  • Yamaguchi A, Nozawa K, Fujishiro M, Kawasaki M, Takamori K, Ogawa H, Sekigawa I et al (2012b) Estrogen inhibits apoptosis and promotes CC motif chemokine ligand 13 expression on synovial fibroblasts in rheumatoid arthritis. Immunopharmacol Immunotoxicol 34(5):852–857. doi:10.3109/08923973.2012.664149

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ (2003) Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol 74(3):448–455

    Article  PubMed  CAS  Google Scholar 

  • Ying S, Robinson DS, Meng Q, Barata LT, McEuen AR, Buckley MG, Walls AF et al (1999) C-C chemokines in allergen-induced late-phase cutaneous responses in atopic subjects: association of eotaxin with early 6-hour eosinophils, and of eotaxin-2 and monocyte chemoattractant protein-4 with the later 24-hour tissue eosinophilia, and relationshi. J Immunol (Baltimore, Md.: 1950) 163(7):3976–3984

    CAS  Google Scholar 

  • Zlotnik A, Yoshie O (2012) The chemokine superfamily revisited. Immunity 36(5):705–716. doi:10.1016/j.immuni.2012.05.008

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a CONACYT Grant No. 167913 (EAGZ). MEE was recipient of a Ph.D. scholarship from CONACyT (#255922) and is a doctoral student of Posgrado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, (UNAM). We would like to thank Dr. Jaciel Medina-Tamayo and Fernando Galicia for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. García-Zepeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendez-Enriquez, E., García-Zepeda, E.A. The multiple faces of CCL13 in immunity and inflammation. Inflammopharmacol 21, 397–406 (2013). https://doi.org/10.1007/s10787-013-0177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-013-0177-5

Keywords

Navigation