Skip to main content
Log in

Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review)

  • Published:
International Applied Mechanics Aims and scope

Variational finite-difference methods of solving linear and nonlinear problems for thin and nonthin shells (plates) made of homogeneous isotropic (metallic) and orthotropic (composite) materials are analyzed and their classification principles and structure are discussed. Scalar and vector variational finite-difference methods that implement the Kirchhoff–Love hypotheses analytically or algorithmically using Lagrange multipliers are outlined. The Timoshenko hypotheses are implemented in a traditional way, i.e., analytically. The stress–strain state of metallic and composite shells of complex geometry is analyzed numerically. The numerical results are presented in the form of graphs and tables and used to assess the efficiency of using the variational finite-difference methods to solve linear and nonlinear problems of the statics of shells (plates)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. P. Abovskii, N. P. Andreev, and A. P. Deruga, Variational Principles in the Theories of Elasticity and Shells [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  2. N. P. Abovskii, N. P. Andreev, A. P. Deruga, L. V. Endzhievskii, V. B. Idel’son, and N. I. Marchuk, “Development and application of extreme variational principles to nonlinear design of complex shell systems,” in: Space Structures in the Krasnoyarsk Region [in Russian], KPI, Krasnoyarsk (1986), pp. 3–17.

  3. N. P. Abovskii, N. P. Andreev, A. P. Deruga, and V. I. Savchenkov, Numerical Methods in the Theories of Elasticity and Shells [in Russian], Izd. Krasnoyarsk. Univ., Krasnoyarsk (1986).

    Google Scholar 

  4. N. P. Abovskii and A. P. Deruga, “Basic results and areas of development of the variational finite-difference method in the design of complex-shaped space frames,” Space Structures in the Krasnoyarsk Region [in Russian], KPI, Krasnoyarsk (1989), pp. 13–26.

  5. V. G. Bazhenov, A. G. Ugodchikov, and A. P. Shinkarenko, “Numerical analysis of the elastic-plastic deformation of shells with curved openings under impulsive loading,” Int. Appl. Mech., 15, No. 5, 398–402 (1979).

    MathSciNet  ADS  MATH  Google Scholar 

  6. V. G. Bazhenov and D. T. Chekmarev, Variational Finite-Difference Schemes in Nonstationary Wave Dynamic Problems for Plates and Shells [in Russian], Izd. Nizhegorod. Univ., Nizhny Novgorod (1992).

    Google Scholar 

  7. V. G. Bazhenov and D. T. Chekmarev, Variational Finite-Difference Method in the Nonstationary Dynamics of Plates and Shells: Problem Solving Manual [in Russian], Izd. NNGU, Nizhny Novgorod (2000).

    Google Scholar 

  8. V. G. Bazhenov and A. P. Shinkarenko, “Variational finite-difference method for solving two-dimensional problems of the dynamics of elastoplastic shells,” in: Applied Problems of Strength and Plasticity [in Russian], Issue 3, Gor’k. Univ., Gorky (1976), pp. 61–69.

  9. V. N. Barashkov, “Variational finite-difference algorithm for solving problems of elasticity and plasticity,” Part 1, Izv. Tomsk. Politekhn. Univ., 306, No. 3, 23–28 (2003).

    Google Scholar 

  10. S. V. Bosakov and O. V. Kozunova, “Variational finite-difference approach to the nonlinear design of foundations plates on a stratified elastic bed,” in: Methods for Solving Applied Problems of Solid Mechanics [in Ukrainian], Issue 10, Dnipropetr. Nats. Univ., Dnipropetrivsk (2009), pp. 34–40.

  11. D. V. Vainberg, P. P. Voroshko, and A. L. Sinyavskii, “Numerical solution of a spatial problem of elasticity,” in: Design of Space Structures [in Russian], Issue 12, Stroiizdat, Moscow (1969), pp. 4–26.

  12. D. V. Vainberg, V. M. Gerashchenko, I. Z. Roitfarb, and A. L. Sinyavskii, “Using the variational method to derive finite-difference equations of the bending of plates,” in: Strength of Materials and Structural Theory [in Russian], Issue 1, Budivel’nyk, Kyiv (1965), pp. 23–33.

  13. P. M. Varvak, New Methods for Solving Problems of Strength of Materials [in Russian], Vyshcha Shkola, Kyiv (1977).

    Google Scholar 

  14. K. Washizu, Variational Methods in Elasticity and Plasticity, Pergamon Press, Oxford (1975).

    MATH  Google Scholar 

  15. P. P. Voroshko, “Variational finite-difference method for solving a three-dimensional problem of elasticity,” in: Numerical Methods for Design of Space Structures [in Russian], Izd. KISI, Kyiv (1969), pp. 45–48.

  16. K. Z. Galimov, Fundamentals of the Nonlinear Theory of Thin Shells [in Russian], Izd. Kazan. Univ., Kazan (1975).

    Google Scholar 

  17. A. I. Golovanov, O. N. Tyuleneva, and A. F. Shigabutdinov, Finite-Element Method in the Statics and Dynamics of Thin-Walled Structures [in Russian], Fizmatlit, Moscow (2006).

    Google Scholar 

  18. E. A. Gotsulyak, V. N. Ermishev, and N. T. Zhadrasinov, “Convergence of the curvilinear-mesh method in problems of the theory of shells,” in: Strength of Materials and Theory of Structures [in Russian], Issue 39, Budivel’nyk, Kyiv (1981), pp. 80–84.

  19. Ya. M. Grigorenko and A. P. Mukoed, Computer Solution of Problems in the Theory of Shells [in Russian], Vyshcha Shkola, Kyiv (1979).

    Google Scholar 

  20. D. S. Griffin and R. B. Kellogg, “A numerical solution for axially symmetrical and plane elasticity problems,” Int. J. Solids Struct., 3, No. 5, 781–794 (1967).

    Article  MATH  Google Scholar 

  21. O. G. Gurtovyi and S. O. Tinchuk, “Variational finite-difference implementation of refined models in problems of the deformation of multilayer coatings,” in: Resource-Saving Materials, Structures, and Buildings [in Ukrainian], Issue 16, NUVGP, Rivne (2007), pp. 170–177.

  22. Yu. A. Gusman and L. A. Oganesyan, “Convergence analysis of finite-difference schemes for degenerate elliptic equations,” Zh. Vych. Mat. Mat. Fiz., 5, No. 2, 351–357 (1965).

    Google Scholar 

  23. A. P. Deruga, “Variational finite-difference schemes based on superconvergence,” in: Proc. 4th All-Russia Seminar on Problems of Optimal Structural Design [in Russian], NGASU, Novosibirsk (2002), pp. 118–130.

  24. A. P. Deruga, “A feature of the variational finite-difference scheme for inhomogeneous shells,” in: Space Structures in the Krasnoyarsk Region [in Russian], KISI, Krasnoyarsk (1993), pp. 173–179.

  25. Zh. S. Erzhanov and T. D. Karinbaev, Finite-Element Method in Problems of Rock Mechanics [in Russian], Nauka Kaz. SSR, Alma-Ata (1975).

    Google Scholar 

  26. I. P. Ermakovskaya, V. A. Maksimyuk, and I. S. Chernyshenko, “Nonlinear elastic two-dimensional problems of the statics of orthotropic thin shells and a method for solving them,” Red. Zh. Prikl. Mekh., Kyiv (1988), No. 7526-V 88 dep. at VINITI 10/19/88, Annot. Prikl. Mekh., 25, No. 2, 129 (1989).

  27. A. A. Il’yushin, Plasticity [in Russian], Gostekhizdat, Moscow–Leningrad (1948).

    Google Scholar 

  28. B. Ya. Kantor and E. V. Eseleva, “Vector variational finite-difference method in the analysis of the deformation of flexible Timoshenko shells,” in: Proc. 17th Int. Conf. on the Theory of Shells and Plates (September 15–20, 1995) [in Russian], Vol.2, Izd. Kazan. Gos. Univ., Kazan (1996), pp. 130–133.

  29. A. V. Karmishin, V. I. Myachenkov, and A. A. Repin, “Variational method for deriving finite-difference equations for orthotropic plates,” Nekot. Vopr. Prochn. Konstr., 3, 63–67 (1967).

    Google Scholar 

  30. V. A. Koldunov, A. N. Kudinov, and O. I. Cherepanov, “Variational finite-difference analysis of the stress–strain state and stability of toroidal structural members,” Vestn. TvGU, Ser. Prikl. Mat., 2, 45–50 (2005).

    Google Scholar 

  31. A. N. Guz, A. S. Kosmodamianskii, V. P. Shevchenko, et al., Stress Concentration, Vol. 7 of the 12-volume series Mechanics of Composite Materials [in Russian], A.S.K., Kyiv (1998).

  32. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers. Definitions, Theorems, and Formulas for Reference and Review, McGraw-Hill, New York (1974).

    Google Scholar 

  33. V. V. Kuznetsov and S. V. Levyakov, “Finite-variation method in the nonlinear mechanics of shells,” Sib. Zh. Vych. Mat., 11, No. 3, 329–340 (2008).

    MATH  Google Scholar 

  34. I. S. Kuz, “Numerical implementation of the variational finite-difference method for domains with curved boundary,” in: Numerical Analysis, Mathematical Simulation, and Their Application in Mechanics [in Russian], Izd. MGU, Moscow (1988), pp. 59–63.

  35. R. Courant, K. Friedrichs, and H. Lewy, “On the partial difference equations of mathematical physics,” IBM J. Res. Develop., 11, No. 2, 215–234 (1967).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. V. A. Lomakin, “On the theory of anisotropic plasticity,” Vestn. MGU, Ser. Mat. Mekh., No. 4, 49–53 (1964).

  37. V. A. Lomakin and M. A. Yumashev, “Stress–strain relationships with nonlinear deformation of orthotropic glass-reinforced plastics,” Mech. Comp. Mater., 1, No. 4, 15–18 (1965).

    Google Scholar 

  38. R. R. Mavlyutov, Stress Concentration in Airframe Elements [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  39. V. A. Maksimyuk, “Using Lagrangian multipliers in static problems for composite shells,” Dop. NAN Ukrainy, No. 11, 75–79 (1998).

  40. V. A. Maksimyuk and I. S. Chernyshenko, “Numerical solution of boundary-value problems in the theory of thin shells and plates with a curved hole,” Teor. Prikl. Mekh., 30, 117–126 (1999).

    Google Scholar 

  41. I. E. Mileikovskii and S. I. Trushin, Design of Thin-Walled Structures [in Russian], Stroiizdat, Moscow (1989).

    Google Scholar 

  42. S. G. Mikhlin, “Variational methods for solving problems of mathematical physics,” Usp. Mat. Nauk, 5, No. 6, 3–51 (1950).

    Google Scholar 

  43. V. P. Mushchanov and O. I. Demidov, “Variational finite-difference design of a sandwich plate on a Winkler foundation,” Such. Promysl. Tsyviln. Budivn., 6, No. 2, 77–91 (2010).

    Google Scholar 

  44. V. F. Mushchanov and A. I. Demidov, “Elastoplastic stress state of circular conical shells of variable and constant thickness with a hole,” Metal. Konstr., 14, No. 3, 125–142 (2008).

    Google Scholar 

  45. V. F. Mushchanov and A. I. Demidov, “Elastoplastic state of a circular toroidal shell with a rectangular hole,” Such. Promysl. Tsyviln. Budivn., 3, No. 2, 67–77 (2007).

    Google Scholar 

  46. W. F. Noh, “CEL: A time-dependent, two-space-dimensional, coupled Euler–Lagrange code,” Meth. Comp. Phys., 3, 117–179 (1964).

    Google Scholar 

  47. L. A. Oganesyan and L. A. Rukhovets, “Variational finite-difference schemes for linear elliptic equations of the second order in a two-dimensional domain with piecewise-smooth boundary,” Zh. Vych. Mat. Mat. Fiz., 8, No. 1, 97–114 (1968).

    MATH  Google Scholar 

  48. L. A. Oganesyan, “Numerical design of plates,” in: Computer Solution of Engineering Problems [in Russian], Proc. Conf. on Mechanization and Automation of Engineering and Management, Leningrad, June (1963), pp. 84–97.

  49. L. A. Oganesyan and L. A. Rukhovets, Variational Finite-Difference Methods for Solving Elliptic Equations [in Russian], Izd. AN Arm. SSR, Yerevan (1979).

    Google Scholar 

  50. I. B. Rudenko, “Equilibrium of an elastoplastic spherical shell with two different circular holes,” in: Problems of Computatonal Mechanics and Strength of Structures [in Ukrainian], Issue 15, Lira, Dnipropetrovsk (2011), pp. 156–161.

  51. G. N. Savin, Stress Distribution around Holes [in Russian], Naukova Dumka, Kyiv (1968).

    Google Scholar 

  52. A. Samarskii, The Theory of Difference Schemes, Marcel Dekker, New York (2001).

    Book  MATH  Google Scholar 

  53. E. A. Storozhuk, I. S. Chernyshenko, and I. B. Rudenko, “Elastoplastic state of spherical shells with cyclically symmetric circular holes,” Int. Appl. Mech., 48, No. 5, 573–582 (2012).

    Article  ADS  Google Scholar 

  54. E. A. Storozhuk, “Vector variational finite-difference method in nonlinear problems of the theory of thin shells with curved holes,” in: Sistems Technologies. Mathematical Problems of Technical Mechanics [in Ukrainian], Issue 3 (62), Dnipropetrovsk (2009), pp. 149–156.

  55. E. A. Storozhuk, I. S. Chernyshenko, and I. B. Rudenko, “Influence of plastic deformation on the stress concentration in a multiply connected spherical shell,” in: Problems of Computational Mechanics and Structural Strength [in Ukrainian], Issue 18, Vyd. DNU, Dnipropetrovsk (2012), pp. 83–188.

  56. E. A. Storozhuk, I. S. Chernyshenko, and I. B. Rudenko, “Vector variational finite-difference method for solving elastoplastic problems for multiply connected spherical shells,” in: Problems of Computational Mechanics and Structural Strength [in Ukrainian], Issue 13, IMA-Pres, Dnipropetrovsk (2009), pp. 228–234.

  57. A. N. Guz, I. S. Chernyshenko, V. N. Chekhov, et al., Theory of Thin Shells Weakened by Holes, Vol. 1 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kyiv (1980).

  58. D. T. Chekmarev, Generation and Analysis of Finite-Difference Representation of Variational Finite-Difference and FE Schemes: Information Technology and Computer Simulation in Mathematics and Mechanics (Educational Materials for Qualification Program) [in Russian], Nizhny Novgorod (2007).

  59. K. F. Chernykh, Linear Theory of Shells [in Russian], Izd. Leningr. Univ., Leningrad (1965).

    Google Scholar 

  60. V. I. Akimova and N. A. Shul’ga, “Design of thick slabs by the variational-difference method,” Int. Appl. Mech., 27, No. 6, 558–563 (1991).

    ADS  Google Scholar 

  61. R. S. Atkatsh, M. L. Baron, and M. P. Bieniek, “A finite difference variational method for bending of plates,” Comp. Struct., 11, No. 6, 573–577 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  62. D. V. Babich and L. P. Khoroshun, “Stability and natural vibrations of shells with variable geometric and mechanical parameters,” Int. Appl. Mech., 37, No. 7, 837–869 (2001).

    Article  Google Scholar 

  63. D. V. Babich and N. Ya. Martynova, “Variational-difference method of calculating the critical loads for shells of revolution,” Strength of Materials, 15, No. 6, 800–802 (1983).

    Article  Google Scholar 

  64. V. D. Barve and S. S. Dey, “Isoparametric finite difference energy method for plate bending problems,” Comp. Struct., 17, No. 3, 459–465 (1983).

    Article  MATH  Google Scholar 

  65. T. Belytschko, J. S.-J. Ong, W. K. Liu, and J. M. Kennedy, “Hourglass control in linear and nonlinear problems,” Comp. Meth. Appl. Mech. Eng., 43, 251–276 (1984).

    Article  MATH  Google Scholar 

  66. D. Bushnell, “Computerized analysis of shells-governing equations,” Comp. Struct., 18, No. 3, 471–536 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  67. D. Bushnell, “Finite-difference energy models versus finite-element models: Two variational approaches on one computer program,” in: S. J. Fenves et al. (eds.), Numerical and Computer Methods in Structural Mechanics, Academic Press, New York (1973), pp. 291–336.

    Google Scholar 

  68. D. Bushnell, B. O. Almroth, and F. Brogan, “Finite-difference energy method for nonlinear shell analysis,” Comp. Struct., 1, No. 3, 361–387 (1971).

    Article  Google Scholar 

  69. I. S. Chernyshenko and V. A. Maksimyuk, “On the stress–strain state of toroidal shells of elliptical cross section formed from nonlinear elastic orthotropic materials,” Int. Appl. Mech., 36, No. 1, 90–97 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  70. R. Courant, K. Friedrichs, and H. Lewy, “On the partial difference equations of mathematical physics,” IBM J. Res. Develop., 11, 215–234 (1967).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. R. Courant, K. Friedrichs, and H. Lewy, ”Uber die partiellen Differenzengleichungen der mathematischen Physik,” Math. Ann., 100, 32–74 (1928).

    Google Scholar 

  72. R. Courant, “Variational methods for the solution of problems of equilibrium and vibrations,” Bull. Amer. Math. Soc., 49, 1–23 (1943).

    Article  MathSciNet  MATH  Google Scholar 

  73. E. U. Dadamukhamedov, V. A. Maksimyuk, I. S. Chernyshenko, “The influence of the stiffness of reinforcing elements on the deformed state of shells with a hole,” J. Math. Sci., 74, No. 4, 1170–1172 (1995).

    Article  Google Scholar 

  74. N. Eratli and A. Gursoy, “Variational derivative for buckling loads of beams and frames,” Int. Appl. Mech., 41, No. 7, 825–830 (2005).

    Article  ADS  Google Scholar 

  75. L. M. Fielding, S. F. Villaca, and L. F. T. Garcia, “Energetic finite difference with arbitrary meshes to plate-bending problems,” Appl. Math. Model., 21, No. 11, 691–698 (1997).

    Article  MATH  Google Scholar 

  76. V. F. Godzula and K. I. Shnerenko, “Stressed state of a composite cylindrical shell with an elliptical hole,” Int. Appl. Mech., 29, No. 11, 925–929 (1993).

    Article  ADS  Google Scholar 

  77. V. F. Godzula and K. I. Shnerenko, “Stress–strain analysis of a composite truncated conical shell,” Int. Appl. Mech., 43, No. 7, 761–766 (2007).

    Article  ADS  Google Scholar 

  78. L. I. Golub, V. A. Maksimyuk, and I. S. Chernyshenko, “Numerical nonlinear elastic analysis of orthotropic spherical shells with an elliptic cutout,” Int. Appl. Mech., 38, No. 2, 203–208 (2002).

    Article  Google Scholar 

  79. D. S. Griffin and R. S. Varga, “Numerical solution of plane elasticity problems,” J. Soc. Indust. Appl. Math., 11, 1046–1062 (1963).

    Article  MathSciNet  Google Scholar 

  80. K. K. Gupta and J. L. Meek, “A brief history of the beginning of the finite element method,” Int. J. Numer. Meth. Eng., 39, 3761–3774 (1996).

    Article  MATH  Google Scholar 

  81. A. N. Guz, I. S. Chernyshenko, and K. I. Shnerenko, “Stress concentration near openings in composite shells,” Int. Appl. Mech., 37, No. 2, 139–181 (2001).

    Article  Google Scholar 

  82. A. N. Guz, E. A. Storozhuk, and I. S. Chernyshenko, “Nonlinear two-dimensional static problems for thin shells with reinforced curvilinear holes,” Int. Appl. Mech., 45, No. 12, 1269–1300 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  83. K. S. Havne and E. L. Stanton, “On energy-derived difference equations in thermal stress problems,” J. Franklin Inst., 284, No. 2, 127–143 (1967).

    Article  Google Scholar 

  84. J. C. Houbolt, A Study of Several Aerothermoelastic Problems of Aircraft Structure in High-Speed Flight, Verlag Leemann, Zurich (1958).

    Google Scholar 

  85. F. F. Ihlenburg, “Plate bending analysis with variational finite difference methods on general grid,” Comp. Struct., 48, No. 1, 141–151 (1993).

    Article  MATH  Google Scholar 

  86. D. E. Johnson, “A difference based variational method for shells,” Int. J. Solids Struct., 6, 699–724 (1970).

    Article  MATH  Google Scholar 

  87. Yu. V. Kokhanenko, “Numerical analysis of edge effects in laminated composites under uniaxial compression,” Int. Appl. Mech., 47, No. 6, 700–706 (2011).

    Article  ADS  Google Scholar 

  88. A. L. Kravchuk, E. A. Storozhuk, and I. S. Chernyshenko, “Stress distribution in flexible cylindrical shells with a circular cut beyond the elastic limit,” Int. Appl. Mech., 24, No. 12, 1179–1182 (1988).

    ADS  MATH  Google Scholar 

  89. L. Lusternik, “Über einige Anwendungen der direkten Methoden in Variations Rechnung,” Mat. Sb., 33, No. 2, 173–202 (1926).

    MATH  Google Scholar 

  90. V. A. Maksimyuk, “Physically nonlinear problems of the theory of orthotropic composite shells with a curvilinear opening,” Int. Appl. Mech., 34, No. 9, 835–839 (1998).

    Article  ADS  Google Scholar 

  91. V. A. Maksimyuk, “Solution of physically nonlinear problems of the theory of orthotropic shells using mixed functionals,” Int. Appl. Mech., 36, No. 10, 1349–1354 (2000).

    Article  MathSciNet  Google Scholar 

  92. V. A. Maksimyuk, “Study of the nonlinearly elastic state of an orthotropic cylindrical shell with a hole, using mixed functionals,” Int. Appl. Mech., 37, No. 12, 1602–1606 (2001).

    Article  Google Scholar 

  93. V. A. Maksimyuk and I. S. Chernyshenko, “Mixed functionals in the theory of nonlinearly elastic shells,” Int. Appl. Mech., 40, No. 11, 1226–1262 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  94. V. A. Maksimyuk and I. S. Chernyshenko, “Nonlinear elastic state of thin-walled toroidal shells made of orthotropic composites,” Int. Appl. Mech., 35, No. 12, 1238–1245 (1999).

    Article  ADS  Google Scholar 

  95. V. A. Maksimyuk, E. A. Storozhuk, and I. S. Chernyshenko, “Using mesh-based methods to solve nonlinear problems of statics for thin shells,” Int. Appl. Mech., 45, No. 1, 32–56 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  96. V. A. Maksimyuk and I. S. Chernyshenko, “Numerical solution of problems for shells of variable stiffness with allowance for transverse shears,” Int. Appl. Mech., 27, No. 3, 275–278 (1991).

    ADS  MATH  Google Scholar 

  97. K. Mallikarjuna Rao and U. Shrinivasa, “A set of pathological tests to validate new finite elements,” Sadhana, 26, 549–590 (2001).

    Article  MATH  Google Scholar 

  98. D. Mijuca, “On hexahedral finite element HC8/27 in elasticity,” Comp. Mech., 33, No. 6, 466–480 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  99. P. K. Mishra and S. S. Dey, “Discrete energy method for the analysis of cylindrical shells,” Comp. Struct., 27, No. 6, 753–762 (1987).

    Article  MATH  Google Scholar 

  100. W. F. Noh, “CEL: A time-dependent, two space dimensional, coupled Eulerian–Lagrange code,” Meth. Comp. Phys., No. 3, 117–179 (1964).

    Google Scholar 

  101. A. Ozutok and A. Akin, “The solution of Euler–Bernoulli beams using variational derivative method,” Sci. Res. Ess., 5, No. 9, 1019–1024 (2010).

    Google Scholar 

  102. M. D. Pazhooh, M. A. Dokainish, and S. Ziada, “Finite element modal analysis of an inflatable, self-rigidizing toroidal satellite component,” Exper. Appl. Mech., 6, No. 1, 281–288 (2011).

    Article  Google Scholar 

  103. V. G. Piskunov, Yu. M. Fedorenko, and A. E. Stepanova, “Variational-difference method in the problem of the vibrations of laminated plates,” Int. Appl. Mech., 28, No. 8, 506–511 (1992).

    Article  ADS  Google Scholar 

  104. E. J. Ruggiero, A. Jha, G. Park, and D. J. Inman, “A literature review of ultra-light and inflated toroidal satellite components,” Shock Vibr. Digest, 35, No. 3, 171–181 (2003).

    Article  Google Scholar 

  105. H. G. Schaeffer, Newton–Raphson Conjugate-Gradient Technique for Calculation of Axisymmetric Buckling of Shallow Spherical Shells with Variable Edge Constraint, NASA-TN-D-5664 (1970).

  106. H. G. Schaeffer and W. L. Heard, Jr., Evaluation of an Energy Method Using Finite Differences for Determining Thermal Midplane Stresses in Plates, NASA TN D-2439 (1964).

  107. W. Schonauer and T. Adolph, “FDEM: How we make theFDMmore flexible than the FEM,” J. Comp. Appl. Math., 158, 157–167 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  108. A. C. Scordelis and K. S. Lo, “Computer analysis of cylindrical shells,” Amer. Concr. Ins. J., 61, No. 5, 539–560 (1964).

    Google Scholar 

  109. N. P. Semenyuk, V. M. Trach and V. V. Merzlyuk, “On the canonical equations of Kirchhoff–Love theory of shells,” Int. Appl. Mech., 43, No. 10, 1149–1156 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  110. Yu. N. Shevchenko and A. Z. Galishin, “Particularizing the constitutive equations of elastoplasticity of a transversely isotropic material,” Int. Appl. Mech., 47, No. 6, 662–669 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  111. K. I. Shnerenko and V. F. Godzula, “Stress concentration near an opening in a composite shell with account of material inhomogeneity,” Mech. Comp. Mater., 39, No. 5, 433–438 (2003).

    Article  Google Scholar 

  112. K. I. Shnerenko and V. F. Godzula, “Stress state of a cylindrical composite panel weakened by a circular hole,” Int. Appl. Mech., 42, No. 5, 555–559 (2006).

    Article  ADS  Google Scholar 

  113. J. P. Singh and S. S. Dey, “Variational finite difference method for free vibration of sector plates,” J. Sound Vibr., 136, 91–104 (1990).

    Article  ADS  Google Scholar 

  114. J. P. Singh and S. S. Dey, “Variational finite difference approach to buckling of plates of variable stiffness,” Comp. Struct., 36, No. 1, 39–45 (1990).

    Article  MATH  Google Scholar 

  115. M. L. Stein and J. Q. Sanders, Jr., A Method for Deflection Analysis of Thin Low-Aspect-Ratio Wings, NASA TN 3640 (1956).

  116. E. A. Storozhuk and I. S. Chernyshenko, “Elastic-plastic state of cylindrical shells with a reinforced hole under combined loading,” Int. Appl. Mech., 24, No. 9, 895–897 (1988).

    ADS  MATH  Google Scholar 

  117. E. A. Storozhuk and I. S. Chernyshenko, “Elastoplastic axially asymmetric deformation of shells with curvilinear openings,” Int. Appl. Mech., 22, No. 7, 644–649 (1986).

    ADS  MATH  Google Scholar 

  118. E. A. Storozhuk and I. S. Chernyshenko, “Reinforcement of the contour of a hole in an inelastic shell,” Int. Appl. Mech., 24, No. 11, 1064–1068 (1988).

    ADS  MATH  Google Scholar 

  119. E. A. Storozhuk, I. S. Chernyshenko, and V. L. Yaskovets, “Elastoplastic state of spherical shells in the region of an elliptical hole,” Int. Appl. Mech., 25, No. 7, 667–672 (1989).

    ADS  MATH  Google Scholar 

  120. H. Y. Sun, Y. N. He, and X. L. Feng, “On error estimates of the penalty method for the unsteady conduction-convention problems 1: Time discretization,” Int. J. Numer. Anal. Model., 9, No. 4, 876–891 (2012).

    MathSciNet  Google Scholar 

  121. E. N. Troyak, E. A. Storozhuk, and I. S. Chernyshenko, “Elastoplastic state of a conical shell with a circular hole on the lateral surface,” Int. Appl. Mech., 24, No. 1, 65–69 (1988).

    ADS  MATH  Google Scholar 

  122. A. K. Verma and S. S. Dey, “Integrated analysis of curved bridge superstructures by variational finite difference method,” Comp. Struct., 38, No. 5–6, 597–603 (1991).

    Article  MATH  Google Scholar 

  123. W. C. Walton, Application of a General Finite-Difference Method for Calculating Bending Deformations of Solid Plates, NASA TN D-536 (1960).

  124. W. Wunderlich and W. D. Pilkey, Mechanics of Structures: Variational and Computational Methods, CRC Press, Boca Raton, FL (2003).

    MATH  Google Scholar 

  125. Y. Xing, B. Liu, and G. Liu, “A differential quadrature finite element method,” Int. J. Appl. Mech., 1, 207–227 (2010).

    Article  Google Scholar 

  126. Y. F. Xing and B. Liu, “High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain,” Int. J. Numer. Meth. Eng., 80, 1718–1742 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  127. V. L. Yaskovets, E. A. Storozhuk, and I. S. Chernyshenko, “Elastoplastic equilibrium of a spherical shell in the form of an eccentric ring,” Int. Appl. Mech., 26, No. 1, 56–61 (1990).

    ADS  MATH  Google Scholar 

  128. L. Zu, “Stability of fiber trajectories for winding toroidal pressure vessels,” Comp. Struct., 94, No. 5, 1855–1860 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Maksimyuk.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 48, No. 6, pp. 3–80, November–December 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimyuk, V.A., Storozhuk, E.A. & Chernyshenko, I.S. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review). Int Appl Mech 48, 613–687 (2012). https://doi.org/10.1007/s10778-012-0544-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-012-0544-8

Keywords

Navigation