Skip to main content
Log in

A set of pathological tests to validate new finite elements

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

The finite element method entails several approximations. Hence it is essential to subject all new finite elements to an adequate set of pathological tests in order to assess their performance. Many such tests have been proposed by researchers from time to time. We present an adequate set of tests, which every new finite element should pass. A thorough account of the patch test is also included in view of its significance in the validation of new elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allman D J 1984 A compatible triangular element including vertex rotation for plane elasticity analysis.Comput. Struct. 19: 1–8

    Article  MATH  Google Scholar 

  • ANSYS 1996 Introduction to ANSYS. Release 5.3, Swanson Analysis Systems Inc., Houston, PA

  • Babuska I 1971 Error bounds for finite element methods.Number Math. 16: 322–333

    Article  MATH  MathSciNet  Google Scholar 

  • Babuska I 1973 The finite element method with Lagrange multipliers.Number Math. 20: 179–192

    Article  MATH  MathSciNet  Google Scholar 

  • Babuska I, Scapolla T 1989 Bench mark computation and performance evaluation for a rhombic plate bending problem.Int. J. Numer. Meth. Engng. 28: 155–179

    Article  MATH  MathSciNet  Google Scholar 

  • Bachrach W E 1987 An efficient formulation of hexahedral elements with high accuracy for bending and incompressibility.Comput. Struct. 26: 453–467

    Article  MATH  Google Scholar 

  • BÄcklund J 1978 On isoparametric elements.Int. J. Numer. Meth. Engng. 12: 731–732

    Article  Google Scholar 

  • Bassayya K, Shrinivasa U 2000 A 14-node brick element, PN5X1, exactly representing linear stress fields.Comput. Struct. 74: 147–165

    Article  Google Scholar 

  • Bassayya K, Bhattacharya K, Shrinivasa U 2000 Au eight-node brick element, PN 340, to represent every constant stress field exactly.Comput. Struct. 14: 441–460

    Article  Google Scholar 

  • Belytschko T, Lasry D 1988 A fractal patch test.IntJ. Numer. Meth. Engng. 26: 2199–2210

    Article  MATH  MathSciNet  Google Scholar 

  • Belytschko T, Stolarski H, Liu W K, Carpenter N, Ong J S J 1985 Stress projection for membrane and shear locking in shell finite elements.Comput. Meth. Appl. Mech. Engng. 51: 221–258

    Article  MATH  MathSciNet  Google Scholar 

  • Belytschko T, Wong B L, Stolarski H 1989 Assumed strain stabilization procedure for the 9-node Lagrange shell element.Int. J. Numer. Meth. Engng. 28: 385–414

    Article  MATH  Google Scholar 

  • Bergan P G, Felippa C A 1985 A triangular membrane element with rotational degrees of freedom.Comput. Meth. Appl. Mech. Engng. 50: 25–69

    Article  MATH  Google Scholar 

  • Bhattacharya K, Bassayya K, Shrinivasa U 1996 Development of an eight-node isoparametric brick element using Papcovitch-Neuber functions.Comput. Struct. (under review)

  • Bigdeli B, Kelly D W 1997C*- convergence in the finite element method.Int. J. Numer. Meth. Engng. 40: 4405–4425

    Article  MATH  MathSciNet  Google Scholar 

  • Bretl J L, Cook R D 1979 A new eight-node solid element.Int. J. Numer. Meth. Engng. 14: 593–615

    Article  MATH  Google Scholar 

  • Brezzi F 1974 On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers.Rev. Francaise Autom. Inf. Rech. Oper., Aual. Numer. 8: 129–151

    MathSciNet  Google Scholar 

  • Chandra S, Prathap G 1989 A field-consistent formulation for the eight-noded solid finite element.Comput. Struct. 33: 345–355

    Article  MATH  Google Scholar 

  • Chandra S, Kumar P, Chattopadhya L, James D 2001 Report No. PD-ST-XXX, National Aerospace Laboratories, Bangalore

  • Chapelle D, Bathe KJ 1993 The inf-sup test.Comput. Struct. 47: 537–545

    Article  MATH  MathSciNet  Google Scholar 

  • Cheung Y K, Chen W 1988 Isoparametric hybrid hexahedral elements for three dimensional stress analysis.Int. J. Numer. Meth. Engng. 26: 677–693

    Article  MATH  Google Scholar 

  • Cheung Y K, Chen W 1992 Refined hybrid method for plane isoparametric elements using an orthogonal approach.Comput. Struct. 42: 683–694

    Article  Google Scholar 

  • Choi J K, Lim J K 1995 General curved beam elements based on the assumed strain fields.Comput. Struct. 55: 379–386

    Article  MATH  Google Scholar 

  • Claudio F, Maria M 1998 Some finite elements for the static analysis of beams with varying crosssection.Comput. Struct. 69: 191–196

    Article  MATH  Google Scholar 

  • Felippa C A, Haugen B J 1995 From the individual element test to finite element templates: evolution of the patch test.Int. J. Numer. Meth. Engng. 38: 199–229

    Article  MATH  MathSciNet  Google Scholar 

  • Gifford L N 1979 More on distorted isoparametric elements.Int. J. Numer. Meth. Engng. 14: 290–291

    Article  Google Scholar 

  • Graf W, Chang T Y, Saleeb A F 1986 On the numerical performance of three dimensional thick shell elements using a hybrid/mixed formulation.Finite Elements Anal. Design. 2: 357–375

    Article  Google Scholar 

  • Hauptmann R, Schweizerhof K 1998 A systematic development of solid shell element formulations for linear and nonlinear analyses employing only displacement degrees of freedom.Int. J. Numer. Meth. Engng. 42: 49–69

    Article  MATH  Google Scholar 

  • Hayes L J 1981 Practical stability test for finite elements with reduced integration.Int. J. Numer. Meth. Engng. 17: 1689–1695

    Article  MATH  MathSciNet  Google Scholar 

  • Irons B M 1966 Engineering applications of numerical integration in stiffness methods.AIAA J. 4: 2035–2037

    Article  MATH  Google Scholar 

  • Irons B M, Barlow J 1964 Comments on ‘Matrices for the direct stiffness method by R J Melosh’.AIAA J. 2: 403–404

    Google Scholar 

  • Irons B M, Loikkanen M 1983 An engineer’s defence of the patch test.Int. J. Numer. Meth. Engng. 19: 1391–1401

    Article  MATH  MathSciNet  Google Scholar 

  • Irons B M, Razzaque A 1972Experience with the patch test for convergence of finite elements in mathematical foundation of the finite element method (ed.) A K Aziz(New York: Academic Press) pp 557–587

    Google Scholar 

  • Iosilevich A, Bathe K J, Brezzi F 1997 On evaluating the inf-sup condition for plate bending elements.Int. J. Numer. Meth. Engg. 40: 3639–3663

    Article  MATH  MathSciNet  Google Scholar 

  • John S Y, Wayne K E, Norman F A 1999 Finite elements for materials with strain gradient effects.Int. J. Numer. Meth. Engng. 44: 373–391

    Article  MATH  Google Scholar 

  • Lee N S, Bathe K J 1993 Effect of element distortions on the performance of isoparametric elements.Int. J. Numer. Meth. Engng. 36: 3553–3576

    Article  MATH  Google Scholar 

  • Levy S 1953 Structural analysis and influence coefficients for delta wings.J. Aeronaut. Sci. 20: 449–454

    MATH  Google Scholar 

  • MacNeal R H 1951 The solutions of elastic plate problems by electrical analogies.Trans. ASME, J. Appl. Mech. 18: 59–67

    MATH  MathSciNet  Google Scholar 

  • MacNeal R H 1987 A theorem regarding the locking of tapered four-noded membrane elements.Int. J. Numer. Meth. Engng. 24: 1793–1799

    Article  MATH  Google Scholar 

  • MacNeal R H, Harder R L 1985 A proposed set of problems to test finite element accuracy.Finite Elements Anal. Design 1: 3–20

    Article  Google Scholar 

  • Mallikarjuna Rao K, Shrinivasa U 2001 A 20-node hexahedral element, PN6X1, exactly representing linear stress fields.Comput. Struct, (submitted)

  • Melosh R J 1963 Structural analysis of solids.Proc. Am. Soc. Civil Eng. ST4-89: 205–223

    Google Scholar 

  • Muskhelishvili N I 1953Some basic problems of the mathematical theory of elasticity (Groningen: Noordhoff)

    MATH  Google Scholar 

  • Murakami Y 1987Stress intensity factors handbook (Oxford: Pergamon) pp 909–911

    Google Scholar 

  • NAFEMS 1988 Proposed NAFEMS linear bench marks. National Agency for Finite Element Method and Standards, U K

  • Noor A K, Babuska I 1987 Quality assessment and control of finite element solutions.Finite Elements Anal. Design 3: 1–26

    Article  MATH  Google Scholar 

  • Oliveira A E R 1977 The patch test and the serial convergence criteria of the finite element method.Int. J. Solids Struct. 13: 159–78

    Article  MATH  Google Scholar 

  • Pian T H H, Sumihara K 1984 Rational approach for assumed stress finite elements.Int. J. Numer. Meth. Engng. 20: 1685–1695

    Article  MATH  Google Scholar 

  • Punch E F, Atluri S N 1984 Development and testing of stable, invariant, isoparametric curvilinear 2- and 3-dimensional hybrid stress elements.Comput. Meth. Appl. Eng. 47: 331–356

    Article  MATH  Google Scholar 

  • Razzaque A 1986 The patch test for elements.Int. J. Numer. Meth. Engng. 22: 63–71

    Article  MathSciNet  Google Scholar 

  • Robinson J 1986 New FEM user project — single element test for aspect ratio sensitivity of solids (Part I).Finite Element News 1: 26–32

    Google Scholar 

  • Sander G, Beckus P 1977 The influence of the choice of connectors in the finite element method.Int. J. Numer. Meth. Engng. 11: 1491–1505

    Article  MATH  Google Scholar 

  • Smith M 1990 Bench mark tests for geometrically non-linear two dimensional beams.Finite Elements Anal. Design 3: 40–43

    Google Scholar 

  • Sorin M D, Bordan E I 1999 Study of warping torsion of thin walled beams with open cross-section using macro-elements.Int. J. Numer. Meth. Engng. 44: 853–868

    Article  MATH  Google Scholar 

  • Strang G, Fix G J 1973An analysis of the finite element method (Englewood cliffs, NJ: Prentice-Hall).

    MATH  Google Scholar 

  • Stricklin J A, Ho W S, Richardson E Q, Haisler W E 1977 On isoparametric vs linear strain triangular elements.Int. J. Numer. Meth. Engng. 11: 1041–1043

    Article  Google Scholar 

  • Stummel F 1980 The limitations of the patch test.Int. J. Numer. Meth. Engng. 15: 177–188

    Article  MATH  Google Scholar 

  • Sze K Y 1992 Efficient formulations of robust hybrid elements using orthogonal stress or strain interpolants and admissible matrix formulation.Int. J. Numer. Meth. Engng. 35: 1–20

    Article  MathSciNet  Google Scholar 

  • Sze K Y 1996 Admissible matrix formulation from orthogonal approach to explicit hybrid stabilization.Finite Elements Anal. Design 24: 1–30

    Article  MATH  Google Scholar 

  • Sze K Y, Ghali A 1993 Hybrid hexahedral element for solids, plates, shells and beams by selective scaling.Int. J. Numer. Meth. Engng. 36: 1519–1540

    Article  MATH  Google Scholar 

  • Sze K Y, Chen W, Cheung Y K 1992 An efficient quadrilateral plane element with drilling degrees of freedom using orthogonal stress modes.Comput. Struct. 42: 695–705

    Article  MATH  Google Scholar 

  • Tada H, Paris P C, Irwin G R 1973The stress analysis of cracks handbook (Hellerstown: Del Res. Corp.) p. 4

    Google Scholar 

  • Taylor R L, Beresford P J, Wilson E L 1976 A non conforming element for stress analysis.Int. J. Numer. Meth. Engng. 10: 1211–1219

    Article  MATH  Google Scholar 

  • Taylor R L, Zienkiewicz O C, Simo J C, Chan A H C 1986 The patch test — a condition for asserting term convergence.Int. J. Numer. Meth. Engng. 22: 39–62

    Article  MATH  MathSciNet  Google Scholar 

  • Timoshenko S P, Krieger S W 1959Theory of plates and shells 2nd edn. (New York: McGraw-Hill) pp 51–143

    Google Scholar 

  • Venkatesh D N, Shrinivasa U 1995 Generation of eight-node brick element using Papcovitch-Neuber function.Comput. Struct. 54: 1077–1084

    Article  MATH  Google Scholar 

  • Venkatesh D N, Shrinivasa U 1996a Hexahedral elements using PN functions — Applications to beams.Comput. Struct. 60: 305–313

    Article  MATH  Google Scholar 

  • Venkatesh D N, Shrinivasa U 1996b Plate bending with hexahedral PN elements.Comput. Struct. 60: 635–641

    Article  MATH  Google Scholar 

  • Verhegghe B, Powell G H 1986 Control of zero-energy modes in 9-node plane element.Int. J. Numer. Meth. Engng. 23: 863–869

    Article  MATH  Google Scholar 

  • Verma A, Melosh R J 1987 Numerical tests for assessing finite element model convergence.Int. J. Numer. Meth. Engg. 24: 843–857

    Article  MATH  MathSciNet  Google Scholar 

  • Veubeke B F D 1974 Variational principles and the patch test. 1974,Int. J. Numer. Meth. Engng. 8: 783–801

    Article  MATH  Google Scholar 

  • Watson J O 1995 Singular boundary elements for the analysis of cracks in plane strain.Int. J. Numer. Meth. Engng. 38: 2389–2411

    Article  MATH  Google Scholar 

  • Weissman S L 1996 High accuracy, low-order three-dimensional brick elements.Int. J. Numer. Meth. Engng. 39: 2337–2361

    Article  MATH  MathSciNet  Google Scholar 

  • White D W, Abel J F 1989 Testing of shell finite element accuracy and robustness.Finite Elements Anal. Design 6: 129–151

    Article  Google Scholar 

  • Wilson E L, Ibrahimbegovic A 1990 Use of incompatible displacement modes for the calculation of element stiffnesses or stress.Finite Elements Anal. Design 7: 229–241

    Article  Google Scholar 

  • Yunus S M, Saigal S, Cook R D 1989 On improved hybrid finite elements with rotational degrees of freedom.Int. J. Numer. Meth. Engng. 28: 785–800

    Article  Google Scholar 

  • Zhang W U, Chen D P 1997 The patch test conditions and some multivariable finite element formulations.Int. J. Numer. Meth. Engng. 40: 3015–3032

    Article  MATH  Google Scholar 

  • Zienkiewicz O C, Taylor R L 1991The finite element method (New York: McGraw-Hill)

    Google Scholar 

  • Zienkiewicz O C, Taylor R L 1997 The finite element patch test revisited. A computer test for convergence, validation and error estimates.Comput. Methods Appl. Mech. Engg. 149: 223–254

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiwicz O C, Taylor R L, Nakazawa S 1986 The patch test for mixed formulations.Int. J. Numer. Meth. Engg. 23: 1873–1883

    Article  Google Scholar 

  • Zienkiewicz O C, Xu Z, Zeng L F, Samuelsson F, Wiberg N 1993 Linked interpolation for Reissner-Mindlin plate elements: Part I — A simple quadrilateral.Int. J. Numer. Meth. Engng. 36: 3043–3056

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Shrinivasa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, K.M., Shrinivasa, U. A set of pathological tests to validate new finite elements. Sadhana 26, 549–590 (2001). https://doi.org/10.1007/BF02703459

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703459

Keywords

Navigation