Skip to main content
Log in

On structural mixture theory applied to elastic isotropic materials with internal three-component nanoscale structure

  • Published:
International Applied Mechanics Aims and scope

Two types of isotropic materials are considered: two- and three-component elastic particulate composite materials. Two elastic mixture models describing the propagation of plane waves in such materials are briefly characterized. The basic features of plane wave motion are analyzed for both models. The descriptions of the wave picture are compared to reveal some general cases of similarity and difference. To this end, the material is modeled by a three-component elastic mixture and, additionally, plane waves are analyzed using this model

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Broutman and R. H. Krock (eds.), Composite Materials, in 8 vols., Academic Press, New York (1974–1975).

    Google Scholar 

  2. A. N. Guz (ed.), Mechanics of Composite Materials [in Russian], in 12 vols., Naukova Dumka (Vols. 1–4), A.S.K. (Vol. 5–12) Kyiv (1993–2003).

  3. J. J. Rushchitsky, Elements of Mixture Theory [in Russian], Naukova Dumka, Kyiv (1991).

    Google Scholar 

  4. J. J. Rushchitsky and S. I. Surpal, Waves in Microstructural Materials [in Ukrainian], Inst. Mekh. S. P. Timoshenka, Kyiv (1998).

    Google Scholar 

  5. A. Bedford and D. S. Drumheller, “Theories of immiscible and structured mixtures,” Int. J. Eng. Sci., 21, No. 8, 863–960 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Cattani and J. J. Rushchitsky, Wavelet and Wave Analysis as Applied to Materials with Micro- or Nanostructure, World Scientific, Singapore–London (2007).

    MATH  Google Scholar 

  7. A. Kelly and C. Zweben (eds.), Comprehensive Composite Materials, in 6 vols., Pergamon Press, Amsterdam (2000).

    Google Scholar 

  8. I. Milne, R. O. Ritchie, and B. Karihaloo (eds.), Comprehensive Structural Integrity, in 10 vols., Elsevier, New York (2003).

    Google Scholar 

  9. A. N. Guz, J. J. Rushchitsky, and I. A. Guz, “Establishing fundamentals of the mechanics of nanocomposites,” Int. Appl. Mech., 43, No. 3, 247–271 (2007).

    Article  Google Scholar 

  10. A. N. Guz and I. A. Guz, “On models in the theory of stability of multiwalled carbon nanotubes in matrix,” Int. Appl. Mech., 42, No. 6, 617–628 (2006).

    Article  MathSciNet  Google Scholar 

  11. A. N. Guz, J. J. Rushchitsky, and I. A. Guz, “Comparative computer modeling of carbon-polymer composites with carbon or graphite microfibers or carbon nanotubes,” Comp. Model. Eng. Sci., 26, No. 3, 159–176 (2007).

    Google Scholar 

  12. I. A. Guz and J. J. Rushchitsky, “Computational simulation of harmonic wave propagation in fibrous micro- and nano-composites with carbon or graphite microfibers or carbon nanotubes,” Compos. Sci. Techn., 64, No. 4, 861–866 (2007).

    Article  Google Scholar 

  13. I. A. Guz, A. A. Rodger, A. N. Guz, and J. J. Rushchitsky, “Developing the mechanical models for nanomaterials,” Composites Part A: Appl. Sci. Manufact., A38, No. 4, 1234–1250 (2007).

    Article  Google Scholar 

  14. I. A. Guz, A. A. Rodger, A. N. Guz, and J. J. Rushchitsky, “Predicting the properties of nanocomposites with brush-like reinforcement,” in: Abstracts Int. Conf. Carbon Nano Tubes New Engineering Technologies (CNTNET-07), University of Cambridge, Trinity College, September 10–12 (2007), p. 29.

  15. I. A. Guz, A. A. Rodger, A. N. Guz, and J. J. Rushchitsky, “Predicting the properties of micro and nanocomposites: from the microwhiskers to bristled nano-centipedes,” Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci., 365, No. 1860, 3234–3239 (2007).

    Google Scholar 

  16. A. N. Nayfeh and E. A. A. Hassar, “Simulation of the influence of bonding materials on the dynamic behaviour of laminated composites,” Trans. ASME, J. Appl. Mech., 45, No. 10, 850–852 (1978).

    Google Scholar 

  17. H. D. McNiven and Y. Mengi, “A mathematical model for the linear dynamic behaviour of two phase periodic materials,” Int. J. Solids Struct., 15, No. 4, 271–280 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  18. H. D. McNiven and Y. Mengi, “A mixture theory for elastic laminated composites,” Int. J. Solids Struct., 15, No. 4, 281–302 (1979).

    Article  MathSciNet  Google Scholar 

  19. H. D. McNiven and Y. Mengi, “Propagation of transient waves in elastic laminated composites,” Int. J. Solids Struct., 15, No. 4, 303–318 (1979).

    Article  MathSciNet  Google Scholar 

  20. J. J. Rushchitsky, “Sensitivity of structural models of composite material to structural length scales,” Int. Appl. Mech., 42, No. 12, 1364–1370 (2006).

    Article  MathSciNet  Google Scholar 

  21. J. J. Rushchitsky and C. Cattani, “Analysis of plane and cylindrical nonlinear hyperelastic waves in materials with internal structure,” Int. Appl. Mech., 42, No. 10, 1099–1119 (2006).

    Article  MathSciNet  Google Scholar 

  22. R. A. Vaia and H. D. Wagner, “Framework for nanocomposites,” Materials Today, 4, No. 10, 32–37 (2004).

    Article  Google Scholar 

  23. H. D. Wagner and R. A. Vaia, “Nanocomposites: issues at the interface,” Materials Today, 4, No. 10, 38–42 (2004).

    Article  Google Scholar 

  24. A. H. Windle, “Two defining moments: A personal view by Prof. Alan H. Windle,” Compos. Sci. Technol., 67, No. 4, 929–930 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Rushchitsky.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 44, No. 11, pp. 42–54, November 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rushchitsky, J.J. On structural mixture theory applied to elastic isotropic materials with internal three-component nanoscale structure. Int Appl Mech 44, 1233–1243 (2008). https://doi.org/10.1007/s10778-009-0145-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-009-0145-3

Keywords

Navigation