Advertisement

International Applied Mechanics

, Volume 42, Issue 12, pp 1398–1413 | Cite as

Vibrations of a corrugated orthotropic cylindrical shell with free edges

  • G. R. Gulgazaryan
  • L. G. Gulgazaryan
Article

Abstract

The natural vibrations of a corrugated elastic orthotropic cylindrical shell with a directrix perpendicular to its edges that are free are examined

Keywords

corrugated elastic orthotropic cylindrical shell natural vibrations momentless stress state absence of bending stiffness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Abramov, “On transfer of boundary conditions for systems of linear ordinary differential equations (a modification of the sweep method),” Zh. Vych. Mat. Mat. Fiz., 1, No. 3, 542–545 (1961).MathSciNetGoogle Scholar
  2. 2.
    S. A. Ambartsumyan, General Theory of Anisotropic Shells [in Russian], Nauka, Moscow (1974).Google Scholar
  3. 3.
    S. A. Ambartsumyan and M. V. Belubekyan, “On bending waves localized along the edge of a plate,” Int. Appl. Mech., 30, No. 2, 135–140 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. G. Aslanyan, “Relationship between the moment and momentless problems in the theory of vibrations of thin elastic shells,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 5, 118–124 (1977).Google Scholar
  5. 5.
    R. A. Bagdasaryan, M. V. Belubekyan, and K. B. Kazaryan, “Rayleigh waves in a semi-infinite closed cylindrical shell,” in: Wave Problems in Mechanics [in Russian], Nizhni Novgorod (1992), pp. 87–93.Google Scholar
  6. 6.
    M. V. Belubekyan and I.A. Engibaryan, “Waves localized along the free edge of a plate with cubic symmetry,” Izv. RAN, Mekh. Tverd. Tela, No. 6, 139–143 (1996).Google Scholar
  7. 7.
    I. A. Viktorov, Acoustic Surface Waves in Solids [in Russian], Nauka, Moscow (1981).Google Scholar
  8. 8.
    A. L. Gol’denveizer, V. B. Lidskii, and P. E. Tovstik, Free Vibrations of Thin Elastic Shells [in Russian], Nauka, Moscow (1979).Google Scholar
  9. 9.
    Ya. M. Grigorenko, E. I. Bespalova, A. B. Kitaigorodskii, and A. I. Shinkar’, Free Vibrations of Elements of Shell Structures [in Russian], Naukova Dumka, Kyiv (1986).Google Scholar
  10. 10.
    G. R. Gulgazaryan, “A formula for the distribution of the frequencies of a cylindrical shell with an arbitrary directrix,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 2, 161–163 (1979).Google Scholar
  11. 11.
    G. R. Gulgazaryan, “Rayleigh waves in a semi-infinite corrugated plate,” Izv. NAN Armenii, Mekh., 52, No. 3, 17–22 (1999).Google Scholar
  12. 12.
    G. R. Gulgazaryan, “Rayleigh waves in a semi-infinite corrugated orthotropic momentless cylindrical shell,” in: Mathematical Analysis and Its Applications [in Russian], Issue 1, Yerevan (2000), pp. 74–88.Google Scholar
  13. 13.
    G. R. Gulgazaryan, “Waves localized near the generatrix of a semi-infinite corrugated orthotropic thin elastic cylindrical shell,” Vest. NNGU, Ser. Mekh., Issue 1(5), Izd. Nizhn. Novg. Gos. Univ, Nizhni Novgorod (2003), pp. 23–31.Google Scholar
  14. 14.
    G. R. Gulgazaryan, “Natural vibrations localized at the free end of a semi-infinite closed circular cylindrical shell,” Izv. RAN, Mekh. Tverd. Tela, No. 1, 180–192 (2003).Google Scholar
  15. 15.
    G. R. Gulgazaryan, “Vibrations of a semiinfinite, orthotropic, cylindrical shell of open profile,” Int. Appl. Mech., 40, No. 2, 199–212 (2004).CrossRefGoogle Scholar
  16. 16.
    G. R. Gulgazaryan and L. G. Gulgazaryan, “Vibrations localized at the free edge of a semi-infinite open momentless cylindrical shell,” Akust. Visn. AN Ukrainy, 2, No. 4, 42–48 (1999).zbMATHGoogle Scholar
  17. 17.
    G. R. Gulgazaryan and L. G. Gulgazaryan, “Rayleigh waves in a semi-infinite corrugated cylindrical shell,” Izv. RAN, Mekh. Tverd. Tela, No. 3, 151–158 (2001).Google Scholar
  18. 18.
    G. R. Gulgazaryan and L. G. Gulgazaryan, “Vibrations of a cantilever corrugated orthotropic momentless cylindrical shell,” in: College-Level Mathematics [in Russian], Issue 3(9), Izd. Yerevan. Gos. Ped. Univ., Yerevan (2004), pp. 46–66.Google Scholar
  19. 19.
    G. R. Gulgazaryan, V. B. Lidskii, and G. I. Éskin, “Spectrum of a momentless system—a thin shell of arbitrary profile,” Sibir. Mat. Zh., 4, No. 5, 978–986 (1973).Google Scholar
  20. 20.
    G. R. Gulgazaryan and V. B. Lidskii, “Frequency density of the free vibrations of a thin anisotropic shell composed of anisotropic layers,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 3, 171–174 (1982).Google Scholar
  21. 21.
    A. Yu. Ishlinskii, “A case of passing to the limit in the theory of stability of elastic rectangular plates,” Dokl. AN SSSR, 95, No. 3, 477–479 (1954).Google Scholar
  22. 22.
    Yu. K. Konenkov, “On a flexural Rayleigh-type wave,” Akust. Zh., 6, No. 1, 124–126 (1960).MathSciNetGoogle Scholar
  23. 23.
    L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis [in Russian], Gostekhizdat, Leningrad (1952).Google Scholar
  24. 24.
    V. P. Kostromin and V. I. Myachenkov, “Vibrations of open cylindrical shells of variable curvature,” Int. Appl. Mech., 8, No. 8, 912–914 (1972).Google Scholar
  25. 25.
    F. Riesz and B. Szökefalvi-Nagy, Functional Analysis, Ungar, New York (1955).Google Scholar
  26. 26.
    V. A. Solonnikov, “General boundary-value problems for Douglis-Nirenberg elliptic systems,” Izv. AN SSSR, Mat., 28, 665–706 (1964), Tr. Mat. Inst. AN SSSR, 110, No. 6, 233–297 (1970).zbMATHMathSciNetGoogle Scholar
  27. 27.
    G. M. Fikhtengol’ts, A Course of Differential and Integral Calculus [in Russian], Vol. 3, Nauka, Moscow (1969).Google Scholar
  28. 28.
    J. W. Rayleigh, “On waves propagated along the plane surface of an elastic solid,” Proc. Lond. Math. Soc., No. 253, 4–11 (1885/1986).Google Scholar
  29. 29.
    Ya. M. Grigorenko and L. S. Rozhok, “Solving the stress problem for hollow cylinders with corrugated elliptical cross section,” Int. Appl. Mech., 40, No. 2, 169–175 (2004).CrossRefGoogle Scholar
  30. 30.
    Ya. M. Grigorenko and L. S. Rozhok, “Stress solution for transversely isotropic corrugated hollow cylinders,” Int. Appl. Mech., 41, No. 3, 277–282 (2005).CrossRefGoogle Scholar
  31. 31.
    Ya. M. Grigorenko and S. N. Yaremchenko, “Influence of variable thickness on displacements and stresses in nonthin cylindrical orthotropic shells with elliptic cross-section,” Int. Appl. Mech., 40, No. 8, 900–907 (2004).CrossRefGoogle Scholar
  32. 32.
    N. P. Semenyuk, I. Yu. Babich, and N. B. Zhukova, “Natural vibrations of corrugated cylindrical shells,” Int. Appl. Mech., 41, No. 5, 512–519 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • G. R. Gulgazaryan
    • 1
  • L. G. Gulgazaryan
    • 1
  1. 1.Institute of MechanicsNational Academy of Sciences of ArmeniaYerevan

Personalised recommendations