Skip to main content
Log in

Axial and transverse acoustic radiation forces on an elliptical cylinder arbitrarily positioned in a cylindrical quasi-Gaussian beam

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A formal analytical solution of the acoustic radiation force on an elliptical cylinder arbitrarily positioned in a cylindrical quasi-Gaussian beam is developed. The scattering coefficients for the elliptical cylinder are obtained through forcing the acoustic field to meet the boundary condition at the surface of the cylinder, which depends on whether the elliptical cylinder is rigid or fluid. A numerical integration is performed for each partial-wave during the computations. Numerical simulations are provided with particular emphases on the amount of the shift from the center of the cylinder, the tilt incident angle, the aspect ratio of the cylinder and the beam waist of the incident beam. The radiation force on a fluid elliptical cylinder shows a more oscillatory behavior than a rigid one. The attractive transverse radiation force exists under certain conditions, proving the feasibility of designing lateral acoustic tweezers. A wider incident beam induces a stronger axial radiation force due to expansion of the cross section. The results are helpful for predicting the dynamic behaviors of cylindrical particles and guiding particle manipulation in the field of focused cylindrical beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J R Wu J. Acoust. Soc. Am. 89 2140 (1991)

  2. A Ozcelik, J Rufo, F Guo, Y Y Gu, P Li, J Lata and T J Huang Nat. Methods 15 1021 (2018)

  3. A Marzo and B W Drinkwater P. Natl. Acad. Sci. USA 116 84 (2019)

  4. R Q Zhang, H L Guo, W Y Deng, X Q Huang, F Li, J Y Lu and Z Y Liu Appl. Phys. Lett. 116 123503 (2020)

  5. E G Lierke Acustica 82 220 (1996)

  6. M A B Andrade, N Perez and J C Adamowski Braz. J. Phys. 48 190 (2018)

  7. D P Jackson and M H Chang Am. J. Phys. 89 383 (2021)

  8. X Y Ding et al. P. Natl. Acad. Sci. USA 109 11105 (2012)

  9. F Guo et al. P. Natl. Acad. Sci. USA 113 1522 (2016)

  10. F Malekabadi, H O Caldag and S Yesilyurt J. Fluid. Struct. 118 103841 (2023)

  11. L V King Proc. Roya. Soc. London, Ser. A 147 212 (1934)

  12. J Awatani J. Acoust. Soc. Jpn. 9 140 (1953)

  13. T Hasegawa, K Saka, N Inoue and K Matsuzawa J. Acoust. Soc. Am. 83 1770 (1988)

  14. J R Wu, G H Du, S S Work and D M Warshaw J. Acoust. Soc. Am. 87 581 (1990)

  15. W Wei, D B Thiessen and P L Marston J. Acoust. Soc. Am. 116 201 (2004)

  16. F G Mitri and S G Chen Phys. Rev. E 71 016306 (2005)

  17. F G Mitri Eur. Phys. J. B 44 71 (2005)

  18. M Azarpeyvand and M Azarpeyvand J. Sound Vib. 332 2338 (2013)

    Article  ADS  Google Scholar 

  19. X F Zhang, Q Yun, G B Zhang and X N Sun Acta Acust. United Ac. 102 334 (2016)

  20. F G Mitri Chin. Phys. B 29 114302 (2020)

  21. F G Mitri Chin. Phys. B 30 024302 (2021)

  22. Y P Qiao, X F Zhang and G B Zhang J. Acoust. Soc. Am. 141 4633 (2017)

  23. Y P Qiao, X F Zhang and G B Zhang Wave Motion 74 182 (2017)

  24. Y P Qiao, J Y Shi, X F Zhang and G B Zhang Wave Motion 83 111 (2018)

  25. Y P Qiao, H B Wang, X Z Liu and X F Zhang Wave Motion 93 102478 (2020)

  26. Y P Qiao, X W Zhang and M Y Gong J. Appl. Phys. 128 044902 (2020)

    Article  ADS  Google Scholar 

  27. F G Mitri Appl. Math. Model. 64 688 (2018)

  28. F G Mitri Phys. Open 4 100029 (2020)

  29. X L Liu, Z Y Deng, L Ma and X Z Liu Nanotech. Precis. Eng. 5 1672 (2022)

  30. P L Marston, W Wei and D B Thiessen Innov. Nonlinear Acoust. 838 495 (2006)

  31. S M Hasheminejad and R Sanaei J. Comput. Acoust. 15 377 (2007)

    Article  Google Scholar 

  32. S M Hasheminejad and R Sanaei IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 391 (2008)

    Article  Google Scholar 

  33. F G Mitri Ultrasonics 66 27 (2016)

  34. F G Mitri J. Appl. Phys. 118 214903 (2015)

  35. F G Mitri Phys. Fluids. 28 077104 (2016)

  36. F G Mitri, Z E A Fellah and G T Silva J. Sound Vib. 333 7326 (2014)

  37. F G Mitri Ultrasonics 62 20 (2015)

  38. F G Mitri Aip. Adv. 5 097205 (2015)

  39. F G Mitri Wave Motion 66 31 (2016)

  40. F G Mitri J. Appl. Phys. 118 184902 (2015)

  41. F G Mitri Ann. Phys. 342 158 (2014)

Download references

Acknowledgements

This work was funded by Scientific Startup Foundation of Nanjing Normal University (Grant No. 184080H201B49).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchen Zang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, Y. Axial and transverse acoustic radiation forces on an elliptical cylinder arbitrarily positioned in a cylindrical quasi-Gaussian beam. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03175-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03175-7

Keywords

Navigation