Skip to main content
Log in

Applied Problems in the Mechanics of Strain Hardening of Structural Metallic Materials

  • Published:
International Applied Mechanics Aims and scope

Abstract

Some applied problems of the mechanics of strain-hardening processes in metallic materials are considered. To solve these problems, the concept of loading surface, which separates the elastic and elastoplastic domains in the stress space, is used. Strain-hardening models are analyzed. For a wide range of steels and alloys, the most commonly used hypothesis of isotropic-and-kinematic hardening is experimentally justified

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. N. Bastun and L. M. Shkaraputa, “A method of hardening of shells,” Inventor's Certificate 621754 SSSR, MKI G21 D7/10, Otkrytiya. Izobreteniya, No. 32, 89 (1978).

  2. V. N. Bastun and L. M. Shkaraputa, “A method of preventing brittle fracture of welded structures,” Inventor's Certificate 1017457 SSSR, MKI V23 K 28/00, Otkrytiya. Izobreteniya, No. 18, 50 (1983).

  3. V. N. Bastun and A. M. Tonkonozhenko, “A method of determining stresses in structures,” Inventor's Certificate 1024691 SSSR, MKI G01 B5/30, Otkrytiya. Izobreteniya, No. 23, 118 (1983).

  4. V. N. Bastun, A. A. Kaminskii, and S. V. Karpov, “A method of determining stresses in structures,” Inventor's Certificate 1118158 SSSR, MKI G01 B5/30, Otkrytiya. Izobreteniya, No. 47, 126 (1985).

  5. V. N. Bastun, A. A. Kaminskii, and S. V. Karpov, “A transducer for controlling stress level in structures,” Inventor's Certificate 1300292 SSSR, MKI G01 B7/18, Otkrytiya. Izobreteniya, No. 12, 112 (1987).

  6. R. A. Arutyunyan and A. A. Vakulenko, “Multiple loading of an elastoplastic medium,” Izv. AN SSSR, Ser. Mekh., No. 4, 53–61 (1965).

  7. E. K. Ashkenazi and E.V. Ganov, Anisotropy of Structural Materials [in Russian], Mashinostroenie, Leningrad (1972).

    Google Scholar 

  8. V. N. Bastun, “Strain hardening of initially isotropic metals loaded along rectilinear paths,” in: Strength of Materials and Structural Members in Complex Stress State [in Russian], Naukova Dumka, Kiev (1978), pp. 161–171.

    Google Scholar 

  9. V. N. Bastun, “Study into the law of hardening of initially isotropic metals,” Prikl. Mekh., 17, No.4, 51–57 (1981).

    MATH  Google Scholar 

  10. V. N. Bastun, “Analysis of structural strength considering the strain hardening of material,” Probl. Prochn., No. 1, 35–38 (1981).

    Google Scholar 

  11. V. N. Bastun, “Genesis of deformational anisotropy in metals under a simple load,” Int. Appl. Mech., 20, No.4, 368–373 (1984).

    ADS  Google Scholar 

  12. V. N. Bastun, “Nondestructive stress-strain analysis of structural members by solving the problem of genesis of deformation anisotropy,” Prikl. Mekh., 25, No.3, 58–64 (1989).

    MATH  Google Scholar 

  13. V. N. Bastun, “Solving the problem of the origin of strain anisotropy in thin-walled structural elements, ” Int. Appl. Mech., 31, No.5, 365–369 (1995).

    Article  MATH  Google Scholar 

  14. V. N. Bastun, “Crack-tip plastic zone in a material with deformation anisotropy due to loading along spatial rectilinear paths,” Probl. Prochn., No. 6, 21–27 (1997).

  15. V. N. Bastun, “Correlation of the length of the plastic zone at the tip of a mode I crack in an orthotropic material with the parameters of anisotropy,” Probl. Prochn., No. 4, 32–37 (1999).

  16. V. N. Bastun, “On the strain hardening stability of initially isotropic metallic materials under natural ageing,” Int. Appl. Mech., 38, No.11, 1403–1406 (2002).

    Article  MATH  Google Scholar 

  17. V. N. Bastun, “Strain hardening of initially isotropic metals under complex loading along paths of small curvature,” Probl. Prochn., No. 3, 101–109 (2003).

    Google Scholar 

  18. V. N. Bastun and A. A. Kaminskii, “Determining the stress-strain state and strength of structural members by analyzing the strain hardening of their material,” Probl. Prochn., No. 3, 28–48 (2005).

    Google Scholar 

  19. V. N. Bastun, E. M. Dyskin, S. I. Krasnookii, and L. M. Shkaraputa, “Determining the stress state of main pipes under expansion,” Neftyan. Promyshl., Ser. Transport Khranen. Nefti Nefteprod., 5, 7–9 (1982).

    Google Scholar 

  20. D. Broek, Elementary Engineering Fracture Mechanics, Sijthoff-Noordhoff, Groningen, The Netherlands (1978).

    Google Scholar 

  21. D. E. Vyazun and A. M. Koreneva, “Studying the transformation of the yield surface under loading with constant stress intensity,” in: Strength, Plasticity, and Contact Interaction of Solids [in Russian], Izd. Tomsk. Politekhn. Inst., Tomsk (1976), pp. 3–6.

    Google Scholar 

  22. G. V. Galatenko, “Development of a Dugdale crack model on the basis of classical yield surfaces,” Int. Appl. Mech., 25, No.6, 561–566 (1989).

    MATH  Google Scholar 

  23. M. L. Gorb, D. M. Karpinos, and A. A. Ostrovskii, “Experimental investigation of the influence of deformation anisotropy on the elastoplastic properties of sheet steel,” Probl. Prochn., No. 7, 25–30 (1970).

    Google Scholar 

  24. F. V. Grechnikov, Deformation of Anisotropic Materials: Capacity for Further Intensification [in Russian], Mashinostroenie, Moscow (1998).

    Google Scholar 

  25. A. N. Guz, Stability of Three-Dimensional Deformable Bodies [in Russian], Naukova Dumka, Kiev (1971).

    Google Scholar 

  26. A. N. Guz, A. A. Kaminskii, and V. M. Nazarenko, Fracture Mechanics, Vol. 5 of the 12-volume series Mechanics of Composite Materials [in Russian], A.S.K., Kiev (1996).

    Google Scholar 

  27. V. L. Danilov, “Changes in the yield surface during deformation,” Izv. VUZov, Ser. Mashinostr., No. 4, 10–16 (1972).

  28. V. L. Danilov, “Formulation of the strain-hardening law revisited,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 6, 146–150 (1971).

  29. V. P. Degtyarev, “Approximate solution of the problem of genesis of the initial properties and states, ” Probl. Prochn., No. 12, 17–20 (1975).

    Google Scholar 

  30. A. M. Zhukov, “Deformation anisotropy and creep of low-carbon steel at standard temperature,” Inzh. Zh., 1, No.4, 150–153 (1961).

    Google Scholar 

  31. V. G. Zubchaninov, Mathematical Theory of Plasticity [in Russian], Izd. TGTU, Tver' (2002).

    Google Scholar 

  32. V. G. Zubchaninov, N. L. Okhlopkov, and V. V. Garannikov, Experimental Plasticity [in Russian], Izd. Tversk. Gos. Tekhn. Univ., Tver' (2003).

    Google Scholar 

  33. A. A. Il'yushin, Plasticity: General Mathematical Theory [in Russian], Izd. AN SSSR, Moscow (1963).

    Google Scholar 

  34. A. Yu. Ishlinskii, “General theory of plasticity with linear hardening,” Ukr. Matem. Zh., 6, No.3, 314–317 (1954).

    MATH  Google Scholar 

  35. A. Yu. Ishlinskii and D. D. Ivlev, Mathematical Theory of Plasticity [in Russian], Fizmatlit, Moscow (2001).

    Google Scholar 

  36. Yu. I. Kadashevich and V. V. Novozhilov, “Theory of plasticity with residual microstresses taken into account,” Prikl. Mat. Mekh., 22, No.1, 78–89 (1958).

    Google Scholar 

  37. A. A. Kaminskii and V. N. Bastun, Strain Hardening and Fracture of Metals under Varying Loading [in Russian], Kiev, Naukova Dumka (1985).

    Google Scholar 

  38. A. A. Kaminskii and V. N. Bastun, “Features of elastoplastic deformation and fracture of hardened isotropic metals in a complex stress state (review),” Int. Appl. Mech., 29, No.3, 171–189 (1993).

    Article  Google Scholar 

  39. A. A. Kaminskii and V. N. Bastun, “Method for determining the stress-strain state and crack resistance of gas and oil pipelines (review),” Prikl. Mekh., 33, No.8, 3–30 (1997).

    Google Scholar 

  40. A. A. Kaminskii, V. N. Bastun, and S. V. Karpov, “Some methods for analysis of the operational stress-strain state of gas mains,” Visn. AN URSR, No. 11, 62–67 (1985).

  41. A. A. Kaminskii and G. V. Galatenko, “Investigation of fatigue crack growth in materials with hardening, ” Int. Appl. Mech., 20, No.4, 346–351 (1984).

    Google Scholar 

  42. A. A. Kaminskii, V. N. Bastun, S. V. Karpov, et al., Recommendations on Stress-Strain Analysis of Gas Pipelines Using Witness Plates [in Russian], Izd. VNIIGAZ, Moscow (1986).

    Google Scholar 

  43. A. A. Kaminskii, V. N. Bastun, S. V. Karpov, et al., A Method for Controlling the Stress-Strain State of Gas Mains with Witness Plates [in Russian], Izd. VNIIGAZ, Moscow (1987).

    Google Scholar 

  44. A. V. Karasev, “Plasticity of AMg-6m alloy under biaxial tension,” Izv. VUZov, Ser. Mashinostr., No. 12, 12–15 (1973).

  45. S. V. Karpov, A. A. Kaminskii, V. N. Bastun, and N. A. Karpova, Rules for Control of the Stress-Strain State of Gas Pipelines with Witness Plates [in Russian], Izd. VNIIGAZ, Moscow (1987).

    Google Scholar 

  46. B. I. Koval'chuk, A. A. Lebedev, and I. V. Makovetskii, “Experimental investigation of the influence of temperature on the parameters of the loading surface of steel 45,” Probl. Prochn., No. 7, 88–91 (1978).

    Google Scholar 

  47. B. I. Koval'chuk, A. A. Lebedev, and I. V. Makovetskii, “Influence of low-temperature plastic deformation on the loading surface of carbon steel at room and low temperatures,” Probl. Prochn., No. 8, 26–30 (1978).

    Google Scholar 

  48. B. I. Koval'chuk, N. M. Kul'chitskii, and A. A. Lebedev, “Plasticity and strength of predeformed chromium steel under biaxial tension at low temperatures,” Probl. Prochn., No. 10, 23–26 (1978).

    Google Scholar 

  49. D. Kolarov, A. Baltov, and N. Boneeva, Mechanics of Plastic Media [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  50. A. A. Lebedev, B. I. Koval'chuk, F. F. Giginyak, and V. P. Lamashevskii, Mechanical Properties of Structural Materials in Complex Stress State [in Russian], Izd. In Yure, Kiev (2003).

    Google Scholar 

  51. R. R. Mavlyutov, T. N. Mardimasova, and V. S. Kulikov, Residual Stresses Induced by Processes of Thermoelastoplastic Deformation [in Russian], Gilem, Ufa (1998).

    Google Scholar 

  52. F. A. McClintock and A. S. Argon, Mechanical Behavior of Materials, Addison-Wesley, New York (1966).

    Google Scholar 

  53. N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1975).

    Google Scholar 

  54. P. G. Miklyaev and Ya. B. Fridman, Mechanical Anisotropy of Materials [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  55. A. A. Ostrovskii, “Influence of preliminary plastic deformation on the distortion of the limit state curves,” Probl. Prochn., No. 6, 70–73 (1973).

    Google Scholar 

  56. N. L. Okhlopkov, “Hardening of structural materials under complex loading,” in: Stability, Plasticity, and Creep under Complex Loading [in Russian], Izd. Tversk. Gos. Tekhn. Univ., Tver' (1998), pp. 41–56.

    Google Scholar 

  57. L. E. Popov, N. A. Koneva, and I. V. Tereshko, Strain Hardening of Ordered Alloys [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  58. L. E. Popov, V. S. Kobyshev, and L. V. Ganzya, Theory of Strain Hardening of Alloys [in Russian], Izd. Tomsk. Univ., Tomsk (1981).

    Google Scholar 

  59. W. Prager, “Hardening of metal in complex stress state,” in: Theory of Plasticity [Russian translation], Izd. Inostr. Lit., (1948), pp. 325–335.

  60. K. N. Rusinko, Theory of Plasticity and Transient Creep [in Russian], Vyshcha Shkola, Lvov (1981).

    Google Scholar 

  61. N. G. Suturina, “On the shape of the subsequent yield boundary of steel,” in: Studies on Elasticity and Plasticity [in Russian], Izd. Leningr. Univ., Leningrad (1967), pp. 156–160.

    Google Scholar 

  62. N. G. Suturina and G. B. Talypov, “On subsequent yield surfaces,” Vest. Leningr. Univ., No. 19, 82–86 (1965).

    Google Scholar 

  63. G. B. Talypov, Plasticity and Strength of Steel under Complex Loading [in Russian], Izd. Leningr. Univ., Leningrad (1968).

    Google Scholar 

  64. V. I. Trefilov (ed.), V. F. Moiseev, E. P. Pechkovskii, et al., Strain Hardening and Fracture of Polycrystallic Metals [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  65. Ya. B. Fridman, Mechanical Properties of Metals [in Russian], Vol. 2, Mashinostroenie, Moscow (1974).

    Google Scholar 

  66. N. I. Chernyak, Mechanical Properties of Steel under Small Plastic Deformation [in Russian], Izd. AN USSR, Kiev (1962).

    Google Scholar 

  67. M. I. Chernyak and V. N. Bastun, “On some ways to reduce the metal content of structures,” Visn. AN URSR, No. 1, 55–59 (1980).

  68. Yu. N. Shvaiko, “Concept of sliding and smooth loading surfaces in the theory of plasticity,” Dokl. AN USSR, Ser. A, No. 10, 58–63 (1980).

  69. Yu. N. Shevchenko and R. G. Terekhov, Physical Equations of Thermoviscoplasticity [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  70. Yu. N. Shevchenko, S. V. Kulakov, V. N. Bastun, and R. G. Terekhov, “Applicability of some plasticity theories to the description of reloading along different rectilinear paths,” Probl. Prochn., No. 6, 48–52 (1980).

    Google Scholar 

  71. I. N. Shkanov, V. N. Shlyannikov, and N. Z. Braude, “An approach to the criterion analysis of ultimate strains in complex stress state,” Izv. Vuzov, Aviats. Tekhn., No. 4, 98–101 (1980).

  72. M. E. Babeshko and Yu. N. Shevchenko, “Thermoelastoplastic stress-strain state of laminated transversely isotropic shells under axisymmetric loading,” Int. Appl. Mech., 40, No.8, 908–915 (2004).

    Article  Google Scholar 

  73. A. Baltov and A. Sawczuk, “A rule of anisotropic hardening,” Acta Mech., 1, No.2, 81–92 (1965).

    Article  Google Scholar 

  74. S. Chen and E. Krempl, “Experimental determination of strain-induced anisotropy during nonproportional straining of an Al/Mg alloy at room temperature,” Int. J. Plasticity, 7, 827–846 (1991).

    Google Scholar 

  75. M. K. Duszec and P. Perzyna, “On combined isotropic and kinematic hardening effects in plastic flow processes,” Int. J. Plasticity, 7, 351–364 (1991).

    Google Scholar 

  76. M. A. Eisenberg and A. Phillips, “On nonlinear kinematic hardening,” Acta Mech., 5, No.1, 1–13 (1968).

    Article  Google Scholar 

  77. M. A. Eisenberg and A. Phillips, “A theory of plasticity with noncoincident yield and loading surfaces, ” Acta Mech., 11, No.3–4, 247–260 (1971).

    Google Scholar 

  78. S. C. Fan, M. H. Yu, and S. J. Yang, “On the unification of yield criteria,” Trans. ASME, J. Appl. Mech., 68, No.2, 341–343 (2001).

    Google Scholar 

  79. V. P. Golub, Yu. M. Kobzar', and P. V. Fernati, “An approach to constructing a rheological model of a strain-hardening medium,” Int. Appl. Mech., 40, No.7, 776–784 (2004).

    Article  Google Scholar 

  80. A. N. Guz, “On some nonclassical problems of fracture mechanics taking into account the stresses along cracks,” Int. Appl. Mech., 40, No.8, 937–941 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  81. A. N. Guz, M. S. Dyshel', and V. M. Nazarenko, “Fracture and stability of materials and structural members with cracks: Approaches and results,” Int. Appl. Mech., 40, No.12, 1323–1359 (2004).

    Article  Google Scholar 

  82. T. Inoure, K. Tanaka, and T. Ishizaki, “Yield surfaces of metals at elevated temperatures,” in: Trans. 16th Jap. Congr. On Materials Research, Kyoto (1973), pp. 126–131.

  83. H. Ishikawa, “Subsequent yield surface probed from its current center,” Int. J. Plasticity, 13, No.6–7, 533–549 (1997).

    Google Scholar 

  84. A. A. Kaminskii and G. V. Galatenko, “Two-parametric model of a mode I crack in an elastoplastic body under plane-strain conditions,” Int. Appl. Mech., 41, No.6, 621–630 (2005).

    Article  Google Scholar 

  85. A. Khan, M. Kamili, and G. Jackson, “On the evolution of isotropic and kinematic hardening with finite plastic deformation. Part 1,” Int. J. Plasticity, 15, 1265–1275 (1999).

    Google Scholar 

  86. P. Liviery and P. Lazarrin, “Autofrettaged cylindrical vessels and Bauschinger effect: An analytical frame for evaluating residual stress distributions,” Trans. ASME, J. Pressure Vessel Technol., 124, No.1, 38–46 (2002).

    Google Scholar 

  87. W. M. Mair and H. J. Pugh, “Effect of prestrain on yield surfaces in copper,” J. Mech. Eng., 6, No.2, 150–163 (1964).

    Google Scholar 

  88. J. Miastkowski, “Wplyw historii obciazenia na powierchnie plastycznosci. Cz. 1 (Influence of loading history on the yield surface. Part 1),” Mech. Teor. i Stosow., 4, No.2, 5–16 (1966).

    Google Scholar 

  89. J. Miastkowski, “Wplyw historii obciazenia na powierchnie plastycznosci. Cz. 2 (Influence of loading history on the yield surface. Part 2),” Mech. Teor. i Stosow., 6, No.1, 3–31 (1968).

    Google Scholar 

  90. J. Miastkowski and R. Szczebiot, “Yield surfaces and criteria of plastic yielding for a strain hardening material. Part 1. Experimental study,” Eng. Trans., 49, No.1, 89–98 (2001).

    Google Scholar 

  91. J. Miastkowski and R. Szczebiot, “Yield surfaces and criteria of plastic yielding for a strain hardening material. Part 2. Theoretical analysis,” Eng. Trans., 49, No.1, 99–108 (2001).

    Google Scholar 

  92. M. Michno and W. Findley, “A historical perspective of yield surface investigations for metals,” Jnt. J. Non-Linear Mech., 11, No.1, 59–82 (1976).

    Google Scholar 

  93. J. Parker and M. B. Basset, “Plastic stress-strain relationships—some experiments to derive a subsequent yield surface,” Trans. ASME, Ser. E, J. Appl. Mech., 31, No.4, 113–120 (1964).

    Google Scholar 

  94. A. Phillips, “Experimental plasticity. Some thoughts on its present status and possible future trends, ” J. Mech. Plast. Solids, No. 2, 193–231 (1974).

    Google Scholar 

  95. W. Szczepinski, “On the effect of plastic deformation on yield condition,” Arch. Mech. Stosow., 15, No.2, 275–296 (1963).

    Google Scholar 

  96. H. Ziegler, “A modification of Prager's hardening rule,” Quart. Appl. Math., 176, 55–65 (1959).

    MathSciNet  Google Scholar 

  97. M. Zyczkowski, Combined Loading in the Theory of Plasticity, Polish Scientific Publ., Warsaw (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 41, No. 10, pp. 12–51, October 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastun, V.N., Kaminskii, A.A. Applied Problems in the Mechanics of Strain Hardening of Structural Metallic Materials. Int Appl Mech 41, 1092–1129 (2005). https://doi.org/10.1007/s10778-006-0017-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0017-z

Keywords

Navigation