Skip to main content
Log in

Two-Parameter Model of a Mode I Crack in an Elastoplastic Body under Plane-Strain conditions

  • Published:
International Applied Mechanics Aims and scope

Abstract

The Dugdale crack model is generalized to the case of plane strain. The governing equations are set up to determine the stresses in the plastic zone. Numerical results from specific problems are analyzed and compared with those for plane stress state and other cases. A relationship between the crack model and K I-T theory is established in the case of small-scale yielding at the crack tip

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. D. Annin and G. P. Cherepanov, Elastoplastic Problem [in Russian], Nauka, Novosibirsk (1983).

    Google Scholar 

  2. A. N. Guz, “Description and study of some nonclassical problems of fracture mechanics and related mechanisms,” Int. Appl. Mech., 36, No.12, 1537–1564 (2000).

    Article  Google Scholar 

  3. G. V. Galatenko, “Generalized model of a Dugdale crack,” Int. Appl. Mekh., 25, No.3, 260–265 (1989).

    Google Scholar 

  4. G. V. Galatenko, “Elastoplastic fracture of an isotropic plate with a crack under biaxial loading,” Int. Appl. Mech., 25, No.7, 706–711 (1989).

    Google Scholar 

  5. G. V. Galatenko, “Toward an elastoplastic model of a normal-break crack under deformation,” Int. Appl. Mech., 28, No.9, 572–578 (1992).

    Article  Google Scholar 

  6. GOST 25-506-85. Strength Design and Testing. Methods for Mechanical Testing of Metals. Determination of Crack Resistance (Fracture Toughness) under Static Loading [in Russian], Moscow (1985).

  7. A. A. Kaminskii, G. V. Galatenko, and O. S. Degtyareva, “Elastoplastic fracture of an orthotropic plate with a crack under biaxial loading,” Prikl. Mekh., 26, No.8, 93–98 (1990).

    Google Scholar 

  8. A. A. Kaminskii, O. S. Degtyareva, and G. V. Galatenko, “Fracture of orthotropic elastoplastic composites with cracks under biaxial loading,” Mekh. Komp. Mater., No. 2, 284–291 (1991).

    Google Scholar 

  9. A. A. Kaminskii and O. S. Bogdanova, “Long-term crack resistance of an orthotropic viscoelastic plate with a crack under biaxial loading. Safe loads,” Int. Appl. Mech., 31, No.9, 747–753 (1995).

    Article  Google Scholar 

  10. A. A. Kaminskii and O. S. Bogdanova, “Modelling the failure of orthotropic materials subject to biaxial loading,” Int. Appl. Mech., 32, No.10, 813–819 (1996).

    Article  Google Scholar 

  11. M. Ya. Leonov, P. M. Vitvitskii, and S. Ya. Yarema, “Plastic bands in plates with a crack-like concentrator under tension,” Dokl. AN SSSR, 148, No.3, 541–544 (1963).

    Google Scholar 

  12. N. I. Muskhelishvili, Some Basic Problems in the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  13. A. N. Guz, M. Sh. Dyshel', and V. M. Nazarenko, Nonclassical Problems of Fracture Mechanics, Vol. 4 Book 1 of the four-volume series Fracture and Stability of Cracked Materials [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  14. V. V. Panasyuk, Limit Equilibrium of Brittle Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1968).

    Google Scholar 

  15. V. V. Panasyuk and M. P. Savruk, “Model of plastic bands in elastoplastic problems in fracture mechanics,” Fiz.-Khim. Mekh. Mater., No. 2, 49–68 (1992).

  16. V. Z. Parton and E. M. Morozov, Mechanics of Elastoplastic Fracture [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  17. Fracture Toughness Testing and Its Applications, ASTM STP. 381, ASTM, Phila (1965).

  18. L. P. Khoroshun, “Nonlinear crack mechanics,” Int. Appl. Mech., 30, No.11, 827–833 (1994).

    Article  Google Scholar 

  19. G. P. Cherepanov, “Crack propagation in a continuous medium,” Prikl. Mat. Mekh., 31, No.3, 476–488 (1967).

    Google Scholar 

  20. N. J. J. Adams, “Some comments on the effect of biaxial stress on fatigue crack growth and fracture,” Eng. Fract. Mech., No. 5, 983–989 (1973).

  21. G. Alpa, E. Bozzo, and L. Gambarotta, “Validity limits of the Dugdale model for thin cracked plates under biaxial loading,” Eng. Fract. Mech., No. 12, 523–529 (1979).

    Google Scholar 

  22. C. Betegon and J. W. Hancock, “Two-parameter characterization of elastic-plastic crack-tip fields,” Trans. ASME, J. Appl. Mech., 58, 104–110 (1991).

    Google Scholar 

  23. British Standards Institution. Methods for Crack Opening Displacement Testing, BS 5762-1979 (1979).

  24. Y. Z. Chen, “Closed form solutions of T-stress in plane elasticity crack problems,” Int. J. Solids Struct., 37, 1629–1637 (2000).

    Article  Google Scholar 

  25. D. S. Dugdale, “Yielding of steel sheets containing slits,” J. Mech. Phys. Solids, 8, No.2, 100–108 (1960).

    Article  Google Scholar 

  26. T. Fett, “T-stresses in rectangular plates and circular disks,” Eng. Fract. Mech., 60, No.5, 631–652 (1998).

    Article  Google Scholar 

  27. G. P. Cherepanov (ed.), Fracture: A Topical Encyclopedia of Current Knowledge, Krieger, Malabor (1998).

    Google Scholar 

  28. G. V. Galatenko, “Model of plastic deformation at the front of a circular crack under nonaxisymmetric loading,” Int. Appl. Mech., 39, No.1, 105–109 (2003).

    Article  Google Scholar 

  29. G. V. Galatenko, “The stress intensity factor for an elliptic crack under a piecewise-constant load,” Int. Appl. Mech., 38, No.7, 854–860 (2002).

    Article  Google Scholar 

  30. G. V. Galatenko, “A ring-shaped plastic zone at an elliptic crack under triaxial axisymmtric loading,” Int. Appl. Mech., 40, No.2, 218–225 (2004).

    Article  Google Scholar 

  31. A. A. Griffith, “The phenomena of rupture and flow in solids,” Phyl. Trans. Roy. Soc., Ser. A, 221, No.1, 163–198 (1921).

    Google Scholar 

  32. J. W. Hutchinson, “Singular behavior at the end of a tensile crack in a hardening material,” J. Mech. Phys. Solids, 16, 13–31 (1968).

    Article  Google Scholar 

  33. G. R. Irwin, “Analysis of stresses and strain near end of a crack traversing a plate,” J. Appl. Mech., 24, No.3, 361–364 (1957).

    Google Scholar 

  34. A. A. Kaminskii, L. A. Kipnis, and M. V. Dudik, “Initial development of the prefracture zone near the tip of a crack reaching the interface between dissimilar media,” Int. Appl. Mech., 40, No.2, 176–182 (2004).

    Article  Google Scholar 

  35. A. A. Kaminsky, L. A. Kipnis, and M. V. Dudyk, “Modeling of the crack tip plastic zone by two slip lines and the order of stress singularity,” Int. J. Fracture, 126, No.4, L89–L93 (2004).

    Article  Google Scholar 

  36. S. G. Larsson and A. J. Carlsson, “Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic plastic materials,” J. Mech. Phys. Solids, 21, 17–26 (1973).

    Google Scholar 

  37. P. S. Leevers and J. Radon, “Inherent stress biaxiality in various fracture specimen geometries,” Int. J. Fracture, 19, 311–325 (1982).

    Article  Google Scholar 

  38. G. P. Nikishkov, A. Bruckner-Foit, and D. Munz, “Calculation of the second fracture parameter for finite cracked bodies using a three-term elastic-plastic asymptotic expansion,” Eng. Fract. Mech., 52, 685–701 (1995).

    Article  Google Scholar 

  39. N. P. O'Dowd and C. F. Shih, “Family of crack-tip fields characterized by a triaxiality parameter. I. Structure of fields,” J. Mech. Phys. Solids, 39, 989–1015 (1991).

    Article  Google Scholar 

  40. E. Orowan, “Fracture and strength of solids,” Rep. Prog. Phys., 12, 185–232 (1949).

    Article  Google Scholar 

  41. J. R. Rice and G. F. Rosengren, “Plane strain deformation near a crack tip in a power-law hardening material,” J. Mech. Phys. Solids, 16, 1–12 (1968).

    Article  Google Scholar 

  42. S. M. Sharma and N. Aravas, “Determination of higher-order terms in asymptotic elastoplastic crack tip solutions,” J. Mech. Phys. Solids, 39, 1043–1072 (1991).

    Article  Google Scholar 

  43. P. M. Vitvitskii, V. V. Panasyuk, and S. Ya. Yarema, “Plastic deformation around crack and fracture criteria,” Eng. Fract. Mech., No. 7, 305–319 (1975).

  44. A. A. Wells, “Critical tip opening displacement as fracture criteria,” in: Proc. Crack Propagation Symp., Granfield, 1 (1961), pp. 210–221.

    Google Scholar 

  45. M. L. Williams, “On the stress distribution at the base of a stationary crack,” ASME, J. Appl. Mech., 24, 111–114 (1957).

    Google Scholar 

  46. L. Xia, T. C. Wang, and C. F. Shih, “Higher-order analysis of a crack tip in power-law hardening material,” J. Mech. Phys. Solids, 41, 665–687 (1993).

    Article  Google Scholar 

  47. S. Yang, Y. J. Chao, and N. A. Sutton, “Higher order asymptotic fields in a power-law hardening material,” Eng. Fract. Mech., 45, 1–20 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 41, No. 6, pp. 44–55, June 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaminskii, A.A., Galatenko, G.V. Two-Parameter Model of a Mode I Crack in an Elastoplastic Body under Plane-Strain conditions. Int Appl Mech 41, 621–630 (2005). https://doi.org/10.1007/s10778-005-0130-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-005-0130-4

Keywords

Navigation