Skip to main content
Log in

Applications of Thermal Geometries of Black Hole in Metric-Affine Gravity

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the thermodynamical behavior, stability and micro structures of black hole in metric-affine gravity. We investigate the effect of different values of the space-time parameters on the stability and compatibility of phase transition points of the black hole. We extend our study to discuss the different curvature scalars of Weinhold, Ruppeiner, Geometrothermodynamics (GTD) and Hendi-Panahiyah-Eslam-Momennia (HPEM). Meanwhile, we give the analytical expression of the thermodynamic curvatures of the black hole in metric-affine gravity, which display that the black hole may be governed by the repulsion on low temperature region along with attraction on high temperature region, qualitatively. It is presented that the negative thermodynamic curvature is provides the information of attractive interaction between black hole molecules in metric-affine gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availibility

This manuscript has no associated data or the data will not be deposited. There is no observational data related to this article. The necessary calculations and graphic discussion can be made available on request.

References

  1. Michael, G., Mann, R.: arXiv:2210.01909 [gr-qc]. (2022)

  2. Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  Google Scholar 

  3. Wald, R.M.: Living Rev. 4, 6 (2001)

    Article  Google Scholar 

  4. Myung, Y.S.: Phys. Rev. D 77, 104007 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. Carter, B.M.N., Neupane, I.P.: Phys. Rev. D 72, 043534 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  6. Kastor, D., Ray, S., Traschen, J.: Class. Quant. Grav. 26, 195011 (2009)

    Article  ADS  Google Scholar 

  7. Capela, F., Nardini, G.: Phys. Rev. D 86, 024030 (2012)

    Article  ADS  Google Scholar 

  8. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  9. Hawking, S.W.: Commun. Math. Phys. 46, 206 (1976)

    Article  ADS  Google Scholar 

  10. Bekenstein, J.D.: Lett. Nuovo Cimento. 4, 737 (1972)

    Article  ADS  Google Scholar 

  11. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  12. Kubiznak, D., Mann, R.B.: JHEP 033, 1207 (2012)

    Google Scholar 

  13. Padmanabhan, T.: Class. Quant. Grav. 21, 4485 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. Myung, Y.S.: Phys. Rev. D 77, 104007 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. Davies, P.C.W.: Class. Quant. Gravity. 6, 1909 (1989)

    Article  ADS  Google Scholar 

  16. Sumati, S., Kristin, S., Donald, M.W.: Phys. Rev. Lett. 86, 5231 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  17. Cheng, Z.D., Shao, Z.J., Bin, W.: Phys. Rev. D 89, 044002 (2014)

    Article  ADS  Google Scholar 

  18. Sahay, A., Sarkar, T., Sengupta, G.: JHEP 1004, 118 (2010)

    Article  ADS  Google Scholar 

  19. Hermann, R.: New York-Springer. (1973)

  20. Weinhold, F.: Eur. Phys. J. C 77, 110 (2017)

    Article  Google Scholar 

  21. Capela, F., Nardini, G.: Phys. Rev. D 86, 024030 (2012)

    Article  ADS  Google Scholar 

  22. Hendi, S.H., Panahiyan, S., Eslam Panah, B.: Adv. High Energy Phys. 2015, 743086 (2015)

    Article  Google Scholar 

  23. Hendi, S.H., et al.: Phys. Rev. D 92, 06402 (2015)

    MathSciNet  Google Scholar 

  24. Panah, B.E.: Phys. Lett. B 787, 45 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. Soroushfar, S., Saffari, R., Upadhyay, S.: Gen. Relat. Gravit. 51, 130 (2019)

    Article  ADS  Google Scholar 

  26. Bravetti, A., et al.: Adv. High Energy Phys. 11, 549808 (2013)

    MathSciNet  Google Scholar 

  27. Harry, W., et al.: Phys. Rev. D 42, 3385 (1990)

    Google Scholar 

  28. Carlip, S., Vaidya, S.: Class. Quant. Grav. 20, 3838 (2003)

    Article  Google Scholar 

  29. Andrew, P.L.: Phys. Rev. D 77, 044014 (2008)

    Article  MathSciNet  Google Scholar 

  30. Lu, J.X., Shibaji, R., Zhiguang, X.J.: High Energy Phys. 01, 133 (2011)

    Article  ADS  Google Scholar 

  31. Chao, W., Zhiguang, X., Jianfei, X.: Phys. Rev. D 85, 044009 (2012)

    Article  Google Scholar 

  32. Zhiguang, X., Da, Z.J.: High Energy Phys. 09, 028 (2015)

    Google Scholar 

  33. Nicolas, S.G.: Phys. Rev. Lett. 116, 141101 (2016)

    Article  Google Scholar 

  34. Wang, P., Yang, H., Ying, S.: Phys. Rev. D 101, 064045 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  35. Wang, P., Wu, H., Yang, H.: J. High Energy Phys. 07, 002 (2019)

    Article  ADS  Google Scholar 

  36. Liang, K., Wang, P., Wu, H., Yang, M.: Eur. Phys. J. C 80, 187 (2020)

    Article  ADS  CAS  Google Scholar 

  37. Wang, P., Wu, H., Ying, S.: Chin. Phys. C 45, 055105 (2021)

    Article  ADS  CAS  Google Scholar 

  38. Wang, P., Wu, H., Yang, H.: Eur. Phys. J. C 80, 216 (2020)

    Article  ADS  CAS  Google Scholar 

  39. Han, Y.W., Chen, G.: Phys. Lett. B 714, 127 (2012)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  40. Bravetti, A., et al.: Adv. High Energy Phys. 11, 549808 (2013)

    MathSciNet  Google Scholar 

  41. Hendi, S.H.: Eur. Phys. J. C 75, 507 (2015)

    Article  ADS  Google Scholar 

  42. Dadhich, N., Pons, J.M.: Gen. Rel. Grav. 44, 2352 (2012)

    Google Scholar 

  43. Beltran, J., et al.: Phys. Rept. 727, 129 (2018)

    Google Scholar 

  44. Afonso, V.I., et al.: Class. Quant. Grav. 34, 235003 (2017)

    Article  ADS  Google Scholar 

  45. Sebastian, B., Chevrier, J., Valcarcel, J.G.: J. Cosm. Astro. part. Phys. 2023, 018 (2023)

    Google Scholar 

  46. Hehl, F.W., et al.: Phys. Rept. 258, 171 (1995)

    Article  Google Scholar 

  47. Neeman, Y., Sijacki, D.: Annals Phys. 120, 292 (1979)

    Article  ADS  CAS  Google Scholar 

  48. Bahamonde, S., Gigante Valcarcel, J.: JCAP 09, 057 (2020)

    Article  ADS  Google Scholar 

  49. Lenzen, H.: Gen. Rel. Grav. 17, 1151 (1985)

    Article  Google Scholar 

  50. Chen, C.M., et al.: Chin. J. Phys. 32, 40 (1994)

    Google Scholar 

  51. Ho, J., Chern, D.C., Nester, J.M.: Chin. J. Phys. 35, 6 (1997)

    Google Scholar 

  52. Campos, A., Hu, B.L.: Int. J. Theor. Phys. 38, 1271 (1999)

    Article  Google Scholar 

  53. Bl, H., Raval, A., Sinha, S.: Ess. hon. CV Vishveshwara. 130 (1999)

  54. Ökcü, Ö., Aydiner, E.: Eur. Phys. J. C 78, 123 (2018)

    Article  ADS  Google Scholar 

  55. DAlmeida, R., Yogendran, K.P.: arXiv:1802.05116

  56. Ghaffarnejad, H., Yaraie, E., Farsam, M.: arXiv:1802.08749

  57. Ditta, A., et al.: Eur. Phys. J. C 82, 8 (2022)

    Article  Google Scholar 

  58. Yasir, M., Lining, T., Tiecheng, X., Ditta, A.: Front. in Phys. 11, 269 (2023)

    Article  Google Scholar 

  59. Yasir, M., Tiecheng, X., Ditta, A.: Astron. and Comput. 44, 100733 (2023)

    Article  Google Scholar 

  60. Soroushfar, S., Saffari, R., Upadhyay, S.: Gen. Relat. Gravit. 51, 130 (2019)

    Article  ADS  Google Scholar 

  61. Panah, B.E.: Phys. Lett. B 787, 45 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  62. Hendi, S.H.: Eur. Phys. J. C 75, 507 (2015)

    Article  ADS  Google Scholar 

  63. Cvetic, M.: Phys. Rev. D. 84, 024037 (2011)

    Article  ADS  Google Scholar 

  64. Soroushfar, S., Saffari, R., Kamvar, N.: Eur. Phys. J. C 76, 19 (2016)

    Article  Google Scholar 

  65. Ditta, A., et al.: Eur. Phys. J. C 82, 8 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the natural sciences foundation of China (Grant No. 11975145). The authors thank the reviewers for their comments on this paper.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally in this manuscript

Corresponding authors

Correspondence to Xia Tiecheng or Allah Ditta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The curvature scalars have been calculated in this direction as:

$$\begin{aligned} ds^2\!=\!{\left\{ \begin{array}{ll} m g_{a b}^W d X^b d X^a \Rightarrow \text{ Weinhold } , \\ -T^{-1} m g_{a b}^W d X^b d X^a \Rightarrow \text{ Ruppeiner } , \\ (-m_{SS}dS^2+m_{ \kappa _d \kappa _d}d \kappa _d^2+m_{ \kappa _{sh} \kappa _{sh}}d \kappa _{sh}^2)\frac{S m_S}{(\frac{\partial ^2 m}{\partial \kappa _d^2}\frac{\partial ^2 m}{\partial \kappa _{sh}^2})^3} \Rightarrow \text {HPEM} ,\\ (-S m_{SS}+\kappa _d m_{\kappa _d \kappa _d}+ \kappa _{sh} m_{\kappa _{sh} \kappa _{sh}})(-m_{SS}dS^2+m_{ \kappa _d \kappa _d}d \kappa _d^2+m_{ \kappa _{sh} \kappa _{sh}}d \kappa _{sh}^2) \Rightarrow \text {GTD}. \end{array}\right. } \end{aligned}$$
(26)

Some abbreviations in the Section 4 are defined as:

$$\begin{aligned} A= & {} d_1 \kappa _s ^2+q_{\epsilon }^2+q_m^2-4 \kappa _d ^2 \epsilon _1,\\ B= & {} 6 q_{\epsilon }^2 S^2+6 q_m^2 S^2+72 \kappa _d^2 S^2 \epsilon _1 +64 \kappa _{sh} \kappa _d S \epsilon _1 +21 \kappa _{sh} ^2 \epsilon _1,\\ C= & {} -3 d_1 \kappa _s ^2+6 f_1 \kappa _{sh} ^2+16 f_1 \kappa _d^2 S^2+16 f_1 \kappa _{sh} \kappa _dS -3 q_{\epsilon }^2-3 q_m^2+12 \kappa _d^2 \epsilon _1.\\ \zeta= & {} 9 \pi d_1 \kappa _s ^2+36 \pi d_1 \kappa _s ^2 S-54 \pi f_1 \kappa _{sh} ^2-72 \pi f_1 \kappa _{sh} ^2 S-96 P S^3-152 P S^2\\{} & {} +36 \pi q_{\epsilon }^2 S+9 \pi q_{\epsilon }^2+36 \pi q_m^2 S+9 \pi q_m^2-12 S^2-11 S-36 \pi \kappa _d^2 \epsilon _1,\\ \eta= & {} \pi d_1 \kappa _s^2- 2 \pi f_1 \kappa _{sh}^2+8 P S^2+\pi q_{\epsilon }^2+\pi q_m^2-S-4 \pi \kappa _d ^2 \epsilon _1.\\ \digamma= & {} d_1 \kappa _s ^2-10 f_1 \kappa _{sh} ^2+q_{\epsilon }^2+q_m^2+12 \kappa _d ^2 \epsilon _1 ,\\ \beth= & {} d_1 \kappa _s ^2+4 d_1 \kappa _s ^2 S-6 f_1 \kappa _{sh} ^2-8 f \kappa _{sh} ^2 S+q_{\epsilon }^2 (4 S+1)+4 q_m^2 S+q_m^2-4 \kappa _d ^2 \epsilon _1.\\ \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasir, M., Tiecheng, X., Ditta, A. et al. Applications of Thermal Geometries of Black Hole in Metric-Affine Gravity. Int J Theor Phys 63, 26 (2024). https://doi.org/10.1007/s10773-023-05542-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05542-2

Keywords

Navigation