Skip to main content
Log in

Holographic Conductivity from Einstein-Maxwell-Dilaton Theory in Gauss-Bonnet Gravity and Entropy Function

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider the holographic DC and Hall conductivity in Einstein-Maxwell-Dilaton theory in Gauss-Bonnet gravity with momentum dissipation. We analytically derived the DC conductivity and Hall conductivity from the black horizon data and found that the conductivities are independent of the Gauss-Bonnet coupling. We also used the entropy function formalism to get the conductivities in terms of the charge of the black hole, even without knowing the explicit black hole solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartnoll, S.A.: Lectures on holographic methods for condensed matter physics, arXiv:0903.3246

  2. McGreevy, J.: Holographic duality with a view toward many-body physics, arXiv:0909.0518

  3. Herzog, C.P.: Lectures on Holographic Superfluidity and Superconductivity, arXiv:0904.1975

  4. Andrade, T., Withers, B.: A simple holographic model of momentum relaxation. arXiv:1311.5157

  5. Vegh, D.: Holography without translational symmetry. arXiv:1301.0537

  6. Davison, R.A.: AMomentum relaxation in holographic massive gravity. Phys. Rev. D 88, 086003 (2013). arXiv:1306.5792

  7. Zeng, H.B., Wu, J.-P.: Holographic superconductors from the massive gravity. Phys. Rev. D 90, 046001 (2014). arXiv:1404.5321

    Article  ADS  Google Scholar 

  8. Horowitz, G.T., Santos, J.E., Tong, D.: Optical Conductivity with Holographic Lattices. JHEP 1207, 168 (2012). arXiv:1204.0519

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ling, Y., Niu, C., Wu, J.P., Xian, Z.Y., Zhang, H.: Holographic Lattice in Einstein-Maxwell-Dilaton Gravity. JHEP 11, 006 (2013). arXiv:1309.4580

  10. Donos, A., Gauntlett, J.P.: Novel metals and insulators from holography. JHEP. 06, 007 (2014). arXiv:1401.5077

  11. Donos, A., Gauntlett, J.P.: Thermoelectric DC conductivities from black hole horizons. arXiv:1406.4742

  12. Blake, M., Donos, A.: Quantum Critical Transport and the Hall Angle. Phys. Rev. Lett. 114, 021601 (2015). arXiv:1406.1659

    Article  ADS  Google Scholar 

  13. Blake, M., Donos, A., Lohitsiri N.: Magnetothermoelectric Response from Holography. JHEP. 08, 124 (2015). arXiv:1502.03789

  14. Kim, K.Y.: Kyung Kiu Kim. Y Seo, S J Sin, Thermoelectric Conductivities at Finite Magnetic Field and the Nernst Effect, JHEP 07, 027 (2015). arXiv:1502.05386

    Google Scholar 

  15. Zhou, Zhenhua, Jian-Pin, Wu., Ling, Yi.: DC and Hall conductivity in holographic massive Einstein-Maxwell-Dilaton gravity. JHEP 08, 067 (2015). arXiv:1504.00535

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Ge, X.-H., Ling, Y., Niu, C., Sin, S.J.: Thermoelectric conductivities, shear viscosity, and stability in an anisotropic linear axion model. Phys.Rev.D. 92(10), 106005 (2015). arXiv:1412.8346

  17. Cheng, L., Ge, X.H.: Z Y Sun Thermoelectric conductivities, shear viscosity, and stability in an anisotropic linear axion model. JHEP 04, 135 (2015). arXiv:1411.5452

    Article  ADS  Google Scholar 

  18. Ge, Xian-Hui., Sin, Sang-Jin.: Shao-Feng Wu “Universality of DC Electrical Conductivity from Holography", Phys. Lett. B 767, 63 (2017). arXiv:1512.01917

  19. Kuang, X.-M., Papantonopoulos, E., Wu, J.P., Zhou, Z.: “The Lifshitz black branes and DC transport coefficients in massive Einstein-Maxwell-dilaton gravity". Phys. Rev. D 97, 066006 (2018). arXiv:1709.02976

  20. Jiang, W.J., Liu, H.S., Lu, H., Pope, C.N.: DC Conductivities with Momentum Dissipation in Horndeski Theories. JHEP 07, 084 (2017). arXiv:1703.00922

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Khimphun, Sunly, Lee, Bum-Hoon., Park, Chanyong, Zhang, Yun-Long.: Anisotropic Dyonic Black Brane and its Effects on Hydrodynamics. JHEP 1710, 064 (2017). arXiv:1705.00862

    Article  ADS  MATH  Google Scholar 

  22. Jeong, H.-S., Kim, K.-Y., Sun, Y.-W.: Quasi-normal modes of dyonic black holes and magneto-hydrodynamics. JHEP 07, 065 (2022). arXiv:2203.02642

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Baggioli, M., Kim, K.Y., Li, L., Li, W.J.: “Holographic Axion Model: a simple gravitational tool for quantum matter,," Sci. China Phys. Mech. Astron. 64(7), 27000 (2021). arXiv:2101.01892

  24. Sen, A.: Black hole entropy function and the attractor mechanism in higher derivative gravity. JHEP 0509, 038 (2005). arXiv:hep-th/0506177

    Article  ADS  MathSciNet  Google Scholar 

  25. Erdmenger, J., Fernandez, D., Goulart, P., Witkowski, P.: Conductivities from attractors. JHEP 03, 147 (2017). arXiv:1611.09381

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Alejo, L., Goulart, P., Nastase, H.: S-duality, entropy function and transport in AdS4/CMT3. JHEP 09, 003 (2019). arXiv:1905.04898

    Article  ADS  Google Scholar 

  27. Nastase, H., Tiedt, CL.: “Holographic transport with topological term and entropy function," arXiv:2208.08309

  28. Morales, J.F., Samtleben, H.: Entropy function and attractors for AdS black holes. JHEP 0610, 074 (2006). arXiv:0608044

    Article  ADS  MathSciNet  Google Scholar 

  29. Cai, R.G.: Gauss-Bonnet Black Holes in AdS Spaces. Phys. Rev. D 65, 084014 (2002). arXiv:hep-th/0109133

    Article  ADS  MathSciNet  Google Scholar 

  30. Cai, R.G., Nie, Z.Y., Ohta, N., Sun, Y.W.: Shear Viscosity from Gauss-Bonnet Gravity with a Dilaton Coupling. Phys. Rev. D 79, 066004 (2009). arXiv:0901.1421

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC, China (No.11905185).

Author information

Authors and Affiliations

Authors

Contributions

Yan-Tao Hao, Li-Qing Fang and Long Cheng contributed equally to this work.

Corresponding author

Correspondence to Long Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, YT., Fang, LQ. & Cheng, L. Holographic Conductivity from Einstein-Maxwell-Dilaton Theory in Gauss-Bonnet Gravity and Entropy Function. Int J Theor Phys 62, 228 (2023). https://doi.org/10.1007/s10773-023-05487-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05487-6

Keywords

Navigation