Skip to main content
Log in

Quantum Secret Sharing with Identity Authentication Based on GHZ States Entanglement Swapping

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A quantum secret sharing scheme with identity authentication is proposed. By leveraging the measurement correlation of the GHZ states, conjugate measurement bases (X-basis and Y-basis) and bitwise XOR operation, the secret message sender, Alice, can authenticate the identities of other participants, namely Bob and Charlie. Once quantum identity authentication is established, Alice encrypts the secret message by mapping it into a local unitary operation on the GHZ particles based on the pre-agreed coding rules. With the entanglement swapping feature of GHZ states, Bob and Charlie can decode Alice’s secret message by utilizing Bell-basis measurement. The proposed scheme is characterized by its simple operation, high transmission efficiency and quantum bit utilization. Additionally, it demonstrates resilience against various common attacks, including interception retransmission attack, identity impersonation attack, denial of service attack, entangle-and-measure attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://doi.org/10.1145/359168.359176

    Article  MathSciNet  Google Scholar 

  2. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999). https://doi.org/10.1103/PhysRevA.59.1829

    Article  ADS  MathSciNet  Google Scholar 

  3. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999). https://doi.org/10.1103/PhysRevA.59.162

    Article  ADS  Google Scholar 

  4. Xiao, L., Lu Long, G., Deng, F.-G., Pan, J.-W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004). https://doi.org/10.1103/PhysRevA.69.052307

    Article  ADS  Google Scholar 

  5. Lin, S., Wen, Q.-Y., Qin, S.-J., Zhu, F.-C.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282(22), 4455–4459 (2009). https://doi.org/10.1016/j.optcom.2009.07.053

    Article  ADS  Google Scholar 

  6. Abulkasim H, Hamad, S., Khalifa, A., El Bahnasy, K.: Quantum secret sharing with identity authentication based on bell states. Int. J. Quantum Inf. 15(4) (2017). https://doi.org/10.1142/S021974991750023X

  7. Qin, H., Tang, W.K.S., Tso, R.: Three-party quantum secret sharing based on d-dimensional bell state. Modern Phys. Lett. B 33(3) (2019). https://doi.org/10.1142/S0217984919500234

  8. Wang, T.-Y., Wang, X.-X., Cai, X.-Q., Wei, C.-Y., Zhang, R.-L.: Analysis of efficient and secure dynamic quantum secret sharing protocol based on bell states. Quantum Inf. Process. 20(1) (2021). https://doi.org/10.1007/s11128-020-02916-x

  9. Shi, R.-H.: Useful equations about bell states and their applications to quantum secret sharing. IEEE Commun. Lett. 24(2), 386–390 (2020). https://doi.org/10.1109/LCOMM.2019.2954134

    Article  MathSciNet  Google Scholar 

  10. Liu, M.-H.: Multiparty quantum secret sharing protocol using bell particle. Computer and Modernization 0(4), 55–58 (2014)

  11. Samadder Chaudhury, S.: A quantum evolving secret sharing scheme. Int. J. Theor. Phys. 59(12), 3936–3950 (2020). https://doi.org/10.1007/s10773-020-04644-5

    Article  Google Scholar 

  12. Yin-Ju, L.: Quantum secret sharing via cavity qed. Int. J. Theor. Phys. 59(10), 3324–3328 (2020). https://doi.org/10.1007/s10773-020-04591-1

    Article  ADS  Google Scholar 

  13. Song, X., Liu, Y., Xiao, M., Deng, H., Yang, S.: A verifiable (t, n) threshold quantum state sharing scheme on ibm quantum cloud platform. Quantum Inf. Process. 19(9), 337 (2020). https://doi.org/10.1007/s11128-020-02846-8

    Article  ADS  MathSciNet  Google Scholar 

  14. Shi, R.-H., Li, Y.-F.: Quantum secret permutating protocol. IEEE Trans. Comput. 72(5), 1223–1235 (2023). https://doi.org/10.1109/TC.2022.3207121

    Article  Google Scholar 

  15. Ye, C.-Q., Ye, T.-Y.: Circular semi-quantum secret sharing using single particles*. Commun. Theor. Phys. 70(6), 661 (2018). https://doi.org/10.1088/0253-6102/70/6/661

    Article  ADS  MathSciNet  Google Scholar 

  16. Chen, Y., Ye, T.-Y.: Semiquantum secret sharing by using \(\chi \)-type states. Eur. Phys. J. Plus 137(12), 1331 (2022). https://doi.org/10.1140/epjp/s13360-022-03521-w

    Article  Google Scholar 

  17. Li, Q., Chan, W.H., Long, D.-Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  18. Wang, J., Zhang, S., Zhang, Q., Tang, C.-J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(05), 1250050 (2012)

    Article  MathSciNet  Google Scholar 

  19. Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical bobs. J. Phys. A Math. Theor. 46(4), 045304 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Tsai, C.-W., Yang, C.-W., Lee, N.-Y.: Semi-quantum secret sharing protocol using w-state. Modern Phys. Lett. A 34(27), 1950213 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. Shor, P.: Algorithms for quantum computation - discrete logarithms and factoring. In: Goldwasser, S. (ed.) 35TH Annual symposium on foundations ot computer science, proceedings. Annual symposium on foundations of computer science, pp. 124–134. IEEE, Computer Soc Press, 10662 LOS VAQUEROS CIRCLE, LOS ALAMITOS, CA 90720 (1994)

  22. Yang, Y.-G., Liu, X.-X., Gao, S., Chen, X.-B., Li, D., Zhou, Y.-H., Shi, W.-M.: A stronger participant attack on the measurement-device-independent protocol for deterministic quantum secret sharing. Quantum Inf. Process. 20(7) (2021). https://doi.org/10.1007/s11128-021-03141-w

  23. Qin, S.-J., Gao, F., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of the hillery-bužek -berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007). https://doi.org/10.1103/PhysRevA.76.062324

    Article  ADS  Google Scholar 

  24. Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: A simple participant attack on the brádler-dušek protocol. Quantum Info. Comput. 7(4), 329–334 (2007)

    Google Scholar 

  25. Crépeau, C., Salvail, L.: Quantum oblivious mutual identification. In: Guillou, L.C., Quisquater, J.-J. (eds.) Advances in Cryptology – EUROCRYPT ’95, pp. 133–146. Springer, Berlin, Heidelberg (1995)

    Chapter  Google Scholar 

  26. Mihara, T.: Quantum identification schemes with entanglements. Phys. Rev. A 65(5, A) (2002). https://doi.org/10.1103/PhysRevA.65.052326

  27. Li, X., Barnum, H.: Quantum authentication using entangled states. Int. J. Found Comput. Sci. 15(04), 609–617 (2004). https://doi.org/10.1142/S0129054104002649

    Article  MathSciNet  Google Scholar 

  28. Jian, W., Quan, Z., Chao-Jing, T.: Multiparty simultaneous quantum identity authentication based on entanglement swapping. Chin. Phys. Lett. 23(9), 2360–2363 (2006)

    Article  ADS  Google Scholar 

  29. Zhang, Z., Zeng, G., Zhou, N., Xiong, J.: Quantum identity authentication based on ping-pong technique for photons. Phys. Lett. A 356(3), 199–205 (2006). https://doi.org/10.1016/j.physleta.2006.03.048

    Article  ADS  Google Scholar 

  30. Zheng, X.-y., Long, Y.-x.: Controlled quantum secure direct communication with authentication protocol based on five-particle cluster state and classical xor operation. Quantum Inf. Process. 18(5) (2019). https://doi.org/10.1007/s11128-019-2239-0

  31. Kang, M.-S., Heo, J., Hong, C.-H., Yang, H.-J., Han, S.-W., Moon, S.: Controlled mutual quantum entity authentication with an untrusted third party. Quantum Inf. Process 17(7) (2018). https://doi.org/10.1007/s11128-018-1927-5

  32. Zhang, S., Chen, Z.-K., Shi, R.-H., Liang, F.-Y.: A novel quantum identity authentication based on bell states. Int. J. Theor. Phys. 59(1), 236–249 (2020). https://doi.org/10.1007/s10773-019-04319-w

    Article  MathSciNet  Google Scholar 

  33. Jiang, S., Zhou, R.-G., Hu, W.: Semi-quantum mutual identity authentication using bell states. Int. J. Theor. Phys. 60(9), 3353–3362 (2021). https://doi.org/10.1007/s10773-021-04911-z

    Article  Google Scholar 

  34. Lou, X., Wang, S., Ren, S., Zan, H., Xu, X.: Quantum identity authentication scheme based on quantum walks on graphs with ibm quantum cloud platform. Int. J. Theor. Phys. 61(2) (2022). https://doi.org/10.1007/s10773-022-04986-2

  35. Jian, L., Wang, Y., Chen, G., Zhou, Y., Liu, S.: Quantum identity authentication using a hadamard gate based on a ghz state. J Phys. B-Atomic Molecular and Opt. Phys. 56(7) (2023). https://doi.org/10.1088/1361-6455/acbd27

  36. Musanna, F., Kumar, S.: Quantum secret sharing using ghz state qubit positioning and selective qubits strategy with simulation analysis. Int. J. Theor. Phys. 61(10) (2022). https://doi.org/10.1007/s10773-022-05237-0

  37. Hwang, T., Hwang, C.-C., Li, C.-M.: Multiparty quantum secret sharing based on ghz states. Phys. Scr. 83(4) (2011). https://doi.org/10.1088/0031-8949/83/04/045004

  38. Xu, Y., Li, Z., Liu, T., Zhu, H.: Multi-party quantum secret sharing protocol based on ghz states entanglement swapping. Int. J. Theor. Phys. 61(3) (2022). https://doi.org/10.1007/s10773-022-05081-2

  39. Fu-Guo, D., Ping, Z., Xi-Han, L., Chun-Yan, L., Hong-Yu, Z.: Efficient multiparty quantum secret sharing with greenberger-horne-zeilinger states. Chin. Phys. Lett. 23(5), 1084 (2006). https://doi.org/10.1088/0256-307X/23/5/006

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61871120), and the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20191259 and BK20220804)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Ruan, B. & Liu, Z. Quantum Secret Sharing with Identity Authentication Based on GHZ States Entanglement Swapping. Int J Theor Phys 62, 266 (2023). https://doi.org/10.1007/s10773-023-05455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05455-0

Keywords

Navigation