Skip to main content
Log in

Semi-Quantum Mutual Identity Authentication Using Bell States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Identity authentication is an important method to realize information protection in communication. This paper proposes a semi-quantum mutual identity authentication protocol that does not require the third party or complicated operations, only single-qubit measurement operation and XOR operation are performed. The proposed protocol can enable quantum Alice and classical Bob to achieve mutual identity authentication at the same time. The security analysis shows that the proposed protocol can resist the impersonation attack, intercept-measure-resend attack, entangle-measure attack and Trojan horse attack. The comparison demonstrates that our protocol outperforms than other existing protocols in terms of efficiency and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Li, Y.C., Zhou, R., Xu, R.Q., Luo, J., Jiang, S.X.: A quantum mechanics-based framework for EEG signal feature extraction and classification. IEEE Trans. Emerg. Top. Comput. 14, (2020)

  2. Li, Y., Zhou, R.-G., Xu, R., Luo, J., Hu, W.: A quantum deep convolutional neural network for image recognition. Quant Sci. Technol. 5, 44003 (2020)

    Article  Google Scholar 

  3. Hu, W.W., Zhou, R.G., El-Rafei, A., Jiang, S.X.: Quantum image watermarking algorithm based on Haar wavelet transform. IEEE Access. 7, 121303–121320 (2019)

    Article  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  Google Scholar 

  5. WANG, X., HU, J.: Quantum key distribution with the decoy-state method. Sci. Sin. Phys. Mech. Astron. 41, 459–465 (2011)

    Article  Google Scholar 

  6. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, (2003)

  7. Wu, J.Z., Yan, L.: Quantum Key Distribution Protocol Based on GHZ Like State and Bell State. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 12240 LNCS, 298–306 (2020)

  8. Tong, X., Wen, Q.Y., Zhu, F.C.: Quantum secret sharing based on GHZ states entanglement swapping. Beijing Youdian Daxue Xuebao/J Beijing Univ. Posts Telecommun. 30, 44–48 (2007)

    Google Scholar 

  9. Tan, X., Jiang, L.: Improved three-party quantum secret sharing based on bell states. Int. J. Theor. Phys. 52, 3577–3585 (2013)

    Article  Google Scholar 

  10. Abulkasim, H., Hamad, S., Khalifa, A., El Bahnasy, K.: Quantum secret sharing with identity authentication based on bell states. Int. J. Quantum Inf. 15, 6–8 (2017)

    Article  MathSciNet  Google Scholar 

  11. Zhou, R.-G., Huo, M., Hu, W., Zhao, Y.: Dynamic multiparty quantum secret sharing with a trusted party based on generalized GHZ state. IEEE Access. 9, 22986–22995 (2021)

    Article  Google Scholar 

  12. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A - At. Mol. Opt. Phys. 68(6), (2003)

  13. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A - At. Mol. Opt. Phys. 71, 1–4 (2005)

    Google Scholar 

  14. Yu, C.H., De Guo, G., Lin, S.: Quantum secure direct communication with authentication using two nonorthogonal states. Int. J. Theor. Phys. 52, 1937–1945 (2013)

    Article  MathSciNet  Google Scholar 

  15. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  16. Crépeau, C., Salvai, L.: Quantum oblivious mutual identification. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 921, 133–146 (1995)

  17. Dušek, M., Haderka, O., Hendrych, M., Myška, R.: Quantum identification system. Phys. Rev. A - At. Mol. Opt. Phys. 60, 149–156 (1999)

    Article  ADS  Google Scholar 

  18. Shi, B., Li, J., Liu, J., Fan, X., Guo, G.: Quantumn key distribution and quantum authentication based on entangled state.Pdf. Phys. Lett. A 281 83–87. 281, 83–87 (2001)

  19. Mihara, T.: Quantum identification schemes with entanglements. Phys. Rev. A - At. Mol. Opt. Phys. 65(4), (2002)

  20. Li, X., Chen, L.: Quantum Authentication Protocol Using Bell State. In: The First International Symposium on Data, Privacy, and E-Commerce (ISDPE 2007). pp. 128–132 (2007)

  21. Zhang, Z., Zeng, G., Zhou, N., Xiong, J.: Quantum identity authentication based on ping-pong technique for photons. Phys. Lett. Sect. A Gen. At. Solid State Phys. 356, 199–205 (2006)

    MATH  Google Scholar 

  22. Yuan, H., Liu, Y., Min, P.G., Zhu, Z.G., Zhou, J., Zhang, Z.J.: Quantum identity authentication based on ping-pong technique without entanglements. Quantum Inf. Process. 13, 2535–2549 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hong, C.H., Heo, J., Jang, J.G., Kwon, D.: Quantum identity authentication with single photon. Quantum Inf. Process. 16, 1–20 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Zawadzki, P.: Quantum identity authentication without entanglement. Quantum Inf. Process. 18, 1–12 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  25. Zhang, S., Chen, Z.K., Shi, R.H., Liang, F.Y.: A novel quantum identity authentication based on bell states. Int. J. Theor. Phys. 59, 236–249 (2020)

    Article  MathSciNet  Google Scholar 

  26. Yang, Y.G., Wen, Q.Y., Zhang, X.: Multiparty simultaneous quantum identity authentication with secret sharing. Sci. China, Ser. G Physics, Mech. Astron. 51, 321–327 (2008)

    Article  ADS  Google Scholar 

  27. Yu-Guang, Y., Qiao-Yan, W.: Economical multiparty simultaneous quantum identity authentication based on Greenberger–Horne–Zeilinger states. Chinese Phys. B. 18, 3233–3237 (2009)

    Article  ADS  Google Scholar 

  28. Kang, M.S., Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Controlled mutual quantum entity authentication using entanglement swapping. Chinese Phys. B. 24, 090306 (2015)

    Article  Google Scholar 

  29. Penghao, N., Yuan, C., Chong, L.: Quantum authentication scheme based on entanglement swapping. Int. J. Theor. Phys. 55, 302–312 (2016)

    Article  MathSciNet  Google Scholar 

  30. Naseri, M.: Revisiting quantum authentication scheme based on entanglement swapping. Int. J. Theor. Phys. 55, 2428–2435 (2016)

    Article  MathSciNet  Google Scholar 

  31. Kang, M.S., Heo, J., Hong, C.H., Yang, H.J., Han, S.W., Moon, S.: Controlled mutual quantum entity authentication with an untrusted third party. Quantum Inf. Process. 17, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  32. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99, 1–5 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A - At. Mol. Opt. Phys. 79, 1–12 (2009)

    Article  MathSciNet  Google Scholar 

  34. Zhou, N.R., Zhu, K.N., Bi, W., Gong, L.H.: Semi-quantum identification. Quantum Inf. Process. 18, 1–17 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. Tao, Z., Chang, Y., Zhang, S., Dai, J., Li, X.: Two semi-quantum direct communication protocols with mutual authentication based on bell states. Int. J. Theor. Phys. 58, 2986–2993 (2019)

    Article  Google Scholar 

  36. Rong, Z., Qiu, D., Zou, X.: Semi-quantum secure direct communication using entanglement. Int. J. Theor. Phys. 59, 1807–1819 (2020)

    Article  MathSciNet  Google Scholar 

  37. Krawec, W.O.: Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf. Process. 15, 2067–2090 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  38. Deng, F.-G., Zhou, P., Li, X.-H., Li, C.-Y., Zhou, H.-Y.: Robustness of two-way quantum communication protocols against Trojan horse attack. Physics. 3–5 (2005)

  39. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Erratum: improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A - At. Mol. Opt. Phys. 73(49901), (2006)

  40. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. Sect. A Gen. At. Solid State Phys. 351, 23–25 (2006)

    MATH  Google Scholar 

  41. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Shanghai Science and Technology Project in 2020 under Grant No.20040501500.

Author information

Authors and Affiliations

Authors

Contributions

ShuQi Jiang and Ri-Gui Zhou conceived the theory and designed the protocol. ShuQi Jiang wrote the paper and contributed security analysis.

Corresponding author

Correspondence to Ri-Gui Zhou.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Zhou, RG. & Hu, W. Semi-Quantum Mutual Identity Authentication Using Bell States. Int J Theor Phys 60, 3353–3362 (2021). https://doi.org/10.1007/s10773-021-04911-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04911-z

Keywords

Navigation