Skip to main content
Log in

Quantum Secret Sharing via Cavity QED

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A novel quantum secret sharing (QSS) protocol is suggested by utilizing the evolution law of atom via cavity quantum electrodynamics (QED) in this paper. It employs two-atom product states rather than entangled states as the initial quantum resource, and adopts single-atom measurements rather than two-atom or multiple-atom joint measurements. It needs neither the unitary operations nor the quantum entanglement swapping. It can resist both the outside attack and the participant attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing, pp. 175–179. Proc. IEEE Int. Conf. Computers, Systems and Signal Processing (1984)

    MATH  Google Scholar 

  2. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A. 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  4. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A. 69, 052307 (2004)

    Article  ADS  Google Scholar 

  5. Lin, J., Hwang, T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)

    Article  ADS  Google Scholar 

  6. Chen, J.H., Lee, K.C., Hwang, T.: The enhancement of Zhou et al.’s quantum secret sharing protocol. Int. J. Mod. Phy. C. 20(10), 1531–1535 (1999)

    Article  ADS  Google Scholar 

  7. Qin, H.W., Dai, Y.W.: Proactive quantum secret sharing. Quantum Inf. Process. 14, 4237–4244 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. Qin, H.W., Tso, R.L.: Efficient quantum secret sharing based on special multi-dimensional GHZ state. Opt. Quant. Electron. 50, 167 (2018)

    Article  Google Scholar 

  9. Kang, Y., Liao, Q., Geng, J., Guo, Y.: Continuous variable quantum secret sharing with Chinese remainder theorem. Int. J. Theor. Phys. 58, 3986–3997 (2019)

    Article  MathSciNet  Google Scholar 

  10. Liu, L.J., Li, Z.H., Han, Z.W., Zhi, D.L.: A quantum secret sharing scheme with verifiable function. Eur. Phys. J. D. 74, 154 (2020)

  11. Lai, H., Pieprzyk, J., Luo, M.X., Zhan, C., Pan, L., Orgun, M.A.: High-capacity (2,3) threshold quantum secret sharing based on asymmetric quantum lossy channels. Quantum Inf. Process. 19, 157 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  12. Sutradhar, K., Om, H.: Efficient quantum secret sharing without a trusted player. Quantum Inf. Process. 19, 73 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  13. Shu, J.: Quantum state preparation and quantum information processing in cavity QED, pp. 19–20. University of science and technology of China, Heifei (2007)

    Google Scholar 

  14. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)

    Article  ADS  Google Scholar 

  15. Zheng, S.B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion. Phys. Rev. A. 68, 035801 (2003)

    Article  ADS  Google Scholar 

  16. Shan, C.J., Liu, J.B., Chen, T., Liu, T.K., Huang, Y.X., Li, H.: Controlled quantum secure direct communication with local separate measurements in cavity QED. Int. J. Theor. Phys. 49, 334–342 (2010)

    Article  Google Scholar 

  17. Shan, C.J., Liu, J.B., Cheng, W.W., Liu, T.K., Huang, Y.X., Li, H.: Bidirectional quantum secure direct communication in driven cavity QED. Mod. Phys. Lett. B. 23, 3225–3234 (2009)

  18. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  19. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Yin-Ju.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin-Ju, L. Quantum Secret Sharing via Cavity QED. Int J Theor Phys 59, 3324–3328 (2020). https://doi.org/10.1007/s10773-020-04591-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04591-1

Keywords

Navigation