Skip to main content
Log in

Quantum State Engineering for Dissipative Quantum Computation Via a Two-Qubit System Plunged in a Global Squeezed Vacuum Field Reservoir

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Finding new strategies for preserving quantum resources is mandatory for reliable quantum technologies. Here, we address how to harness dissipation for quantum state engineering by considering a dissipative quantum channel consisting of a two-qubit plunged in a global reservoir. Despite the unwanted features of dissipation, we show that it can stabilize quantum resources and give rise to some key advantages for dissipative quantum state engineering and quantum computation. In particular, various classes of entangled states are generated by considering a general initial state for the two-qubit system. More importantly, our results demonstrate that preservation and enhancement of the quantum resources, i.e., coherence and entanglement may occur by adjusting the strength of the squeezed reservoir. Although the dissipation process may generally plague the coherence between two qubits, the squeezed reservoir can recover and enhance this quantity, especially, in the steady state regime. Besides, the stationary entangled states may be generated if a two-qubit system interacts with a global dissipative environment. In analogy with the universal quantum processor that produces unitary transformation, this dissipative two-qubit channel provides a well-established non-unitary transformation for universal quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Reviews of modern physics 81(2), 865 (2009)

  2. Streltsov, A., Adesso, G., Plenio, M.B.: Reviews of Modern Physics 89(4), 041003 (2017)

  3. Wang, D.S.: Quantum Engineering 3(4), e85 (2021)

  4. Breuer, H.P., Laine, E.M., Piilo, J., Vacchini, B.: Reviews of Modern Physics 88(2), 021002 (2016)

  5. Feynman, R.P.: Foundations of physics 16(6), 507–531 (1986)

  6. Zhang, J., Vala, J., Sastry, S., Whaley, K.B.: Physical Review A 67(4), 042313 (2003)

  7. Smart, S.E., Hu, Z., Kais, S., Mazziotti, D.A.: Communications Physics 5(1), 1–7 (2022)

  8. Muthuganesan, R., Sankaranarayanan, R.: Quantum Information Processing 17, 1–12 (2018)

  9. Deutsch, D.: Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 400(1818), 97–117 (1985)

  10. Feynman, R.P.: Foundations of physics 16(6), 507–531 (1986)

  11. Franco, R.L., Bellomo, B., Maniscalco, S., Compagno, G.: International Journal of Modern Physics B 27(01n03), 1345053 (2013)

  12. Ghasemian, E., Tavassoly, M.: Scientific Reports 11(1), 1–16 (2021)

  13. Head-Marsden, K., Mazziotti, D.A.: Physical Review A 99(2), 022109 (2019)

  14. Breuer, H.P., Laine, E.M., Piilo, J., Vacchini, B.: Reviews of Modern Physics 88(2), 021002 (2016)

  15. Hildebrand, R.: Journal of Mathematical Physics 48(10), 102108 (2007)

  16. Verstraete, F., Wolf, M.M., Ignacio Cirac, J.: Nature physics 5(9), 633–636 (2009)

  17. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Physical Review Letters 81(12), 2594 (1998)

  18. Michielsen, K., Nocon, M., Willsch, D., Jin, F., Lippert, T., De Raedt, H.: Computer Physics Communications 220, 44–55 (2017)

  19. Mizel, A., Lidar, D.A., Mitchell, M.: Physical review letters 99(7), 070502 (2007)

  20. Jamiołkowski, A.: Reports on Mathematical Physics 3(4), 275–278 (1972)

  21. Choi, M.D.: Linear algebra and its applications 10(3), 285–290 (1975)

  22. Hanneke, D., Home, J., Jost, J.D., Amini, J.M., Leibfried, D., Wineland, D.J.: Nature Physics 6(1), 13–16 (2010)

  23. Poyatos, J., Cirac, J.I., Zoller, P.: Physical Review Letters 78(2), 390 (1997)

  24. Michielsen, K., Nocon, M., Willsch, D., Jin, F., Lippert, T., De Raedt, H.: Computer Physics Communications 220, 44–55 (2017)

  25. Mizel, A., Lidar, D.A., Mitchell, M.: Physical review letters 99(7), 070502 (2007)

  26. Ghasemian, E., Tavassoly, M.: Scientific Reports 11(1), 1–16 (2021)

  27. Horodecki, R., et al.: Physical Review A 54(3), 1838 (1996)

  28. Munro, W.J., James, D.F., White, A.G., Kwiat, P.G.: Physical Review A 64(3), 030302 (2001)

  29. Verstraete, F., Audenaert, K., De Moor, B.: Physical Review A 64(1), 012316 (2001)

  30. Castelano, L., Fanchini, F., Berrada, K.: Physical Review B 94(23), 235433 (2016)

  31. Hillery, M.: Physical Review A 93(1), 012111 (2016)

  32. Rivas, A., Huelga, S.F.: Open quantum systems, vol. 10. Springer (2012)

  33. Zhang, Y.R., Shao, L.H., Li, Y., Fan, H.: Physical Review A 93(1), 012334 (2016)

  34. Baumgratz, T., Cramer, M., Plenio, M.B.: Physical review letters 113(14), 140401 (2014)

  35. Rana, S., Parashar, P., Lewenstein, M.: Physical Review A 93(1), 012110 (2016)

  36. Steane, A.M.: Physical Review Letters 77(5), 793 (1996)

  37. Wootters, W.K.: Physical Review Letters 80(10), 2245 (1998)

  38. Hildebrand, R.: Journal of Mathematical Physics 48(10), 102108 (2007)

  39. Verstraete, F., Wolf, M.M., Ignacio Cirac, J.: Nature physics 5(9), 633–636 (2009)

  40. Mortezapour, A., Lo Franco, R.: Scientific reports 8(1), 1–17 (2018)

  41. Shor, P.W.: Physical review A 52(4), R2493 (1995)

  42. Steane, A.M.: Physical Review Letters 77(5), 793 (1996)

  43. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Science 290(5491), 498–501 (2000)

  44. Xiao, X., Fang, M.F., Li, Y.L., Zeng, K., Wu, C.: Journal of Physics B: Atomic, Molecular and Optical Physics 42(23), 235502 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ghasemian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned} M_{11}= \begin{bmatrix} 4a &{} 0 &{} 0 &{} 0 &{} 0 &{} -2b &{} -2b &{} 0\\ 0 &{} 3a+b &{} a+b &{} 0 &{} -2c &{} 0 &{} 0 &{} -2b\\ 0 &{} a+b &{} 3a+b &{} 0 &{} -2c &{} 0 &{} 0 &{} -2b\\ 2c &{} 0 &{} 0 &{} 2(a+b) &{} 0 &{} -2c &{} -2c &{} 0\\ 2c &{} -2c &{} -2c &{} 0 &{} 3a+b &{} 0 &{} 0 &{} 2c\\ -2a &{} 0 &{} 0 &{} -2c &{} 0 &{} 2(a+b) &{} a+b &{} 0\\ -2a &{} 0 &{} 0 &{} -2c &{} 0 &{} a+b &{} 2(a+b) &{} 0\\ 0 &{} 2c &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} a+3b\\ \end{bmatrix}, \end{aligned}$$
$$\begin{aligned} M_{12}= \begin{bmatrix} 0 &{} -2b &{} -2b &{} 0 &{} 4c &{} 0 &{} 0 &{} 0\\ -2c &{} 0 &{} 0 &{} -2b &{} 0 &{} 2c &{} 0 &{} 0\\ -2c &{} 0 &{} 0 &{} -2b &{} 0 &{} 0 &{} 2c &{} 0\\ 0 &{} -2c &{} -2c &{} 0 &{} 0 &{} 0 &{} 0 &{} 2c\\ a+b &{} 0 &{} 0 &{} 0 &{} 0 &{} -2b &{} -2b &{} 0\\ 0 &{} a+b &{} 0 &{} 0 &{} -2c &{} 0 &{} 0 &{} -2b\\ 0 &{} 0 &{} a+b &{} 0 &{} -2c &{} 0 &{} 0 &{} -2b\\ 0 &{} 0 &{} 0 &{} a+b &{} 0 &{} -2c &{} -2c &{} 0\\ \end{bmatrix}, \end{aligned}$$
$$\begin{aligned} M_{21}= \begin{bmatrix} 0 &{} -2c &{} -2c &{} 0 &{} a+b &{} 0 &{} 0 &{} 0\\ -2a &{} 0 &{} 0 &{} -2c &{} 0 &{} a+b &{} 0 &{} 0\\ -2a &{} 0 &{} 0 &{} -2c &{} 0 &{} 0 &{} a+b &{} -2c\\ 0 &{} -2a &{} -2a &{} 0 &{} 0 &{} 0 &{} 0 &{} a+b\\ 2c &{} 0 &{} 0 &{} 0 &{} 0 &{} -2c &{} -2c &{} 0\\ 0 &{} 2c &{} 0 &{} 0 &{} -2a &{} 0 &{} 0 &{} -2c\\ 0 &{} 0 &{} 2c &{} 0 &{} -2a &{} 0 &{} 0 &{} -2c\\ 0 &{} 0 &{} 0 &{} 4c &{} 0 &{} -2a &{} -2a &{} 0\\ \end{bmatrix}, \end{aligned}$$
$$\begin{aligned} M_{22}= \begin{bmatrix} 3a+b &{} 0 &{} 0 &{} 2c &{} 0 &{} -2b &{} -2b &{} 0\\ 0 &{} 2(a+b) &{} a+b &{} 0 &{} -2c &{} 0 &{} 0 &{} -2b\\ 2c &{} a+b &{} 2(a+b) &{} 0 &{} -2c &{} 0 &{} 0 &{} -2b\\ 2c &{} 0 &{} 0 &{} a+3b &{} 0 &{} -2c &{} -2c &{} 0\\ 0 &{} -2c &{} -2c &{} 0 &{} 2(a+b) &{} 0 &{} 0 &{} 2c\\ -2a &{} 0 &{} 0 &{} -2c &{} 0 &{} a+3b &{} a+b &{} 0\\ -2a &{} 0 &{} 0 &{} -2c &{} 0 &{} a+b &{} a+3b &{} 0\\ 0 &{} -2a &{} -2a &{} 0 &{} 0 &{} 0 &{} 0 &{} 4b\\ \end{bmatrix}, \end{aligned}$$

where we have defined the relations \(a=\frac{\Gamma }{2}(\mathcal {N}+1)\), \(b=\frac{\Gamma }{2}\mathcal {N}\) and \(c=\frac{\Gamma }{2}\mathcal {M}\) and set \(\theta =0\) for the sake of simplicity.

Appendix B

In order to solve the master equation (4), we assume the following inital state for the two-qubit system

$$\begin{aligned} \rho (0)=\begin{bmatrix} \rho _{11} &{} \rho _{12} &{} \rho _{13} &{} \rho _{14}\\ \rho _{21} &{} \rho _{22} &{} \rho _{23} &{} \rho _{24}\\ \rho _{31} &{} \rho _{32} &{} \rho _{33} &{} \rho _{34}\\ \rho _{41} &{} \rho _{42} &{} \rho _{43} &{} \rho _{44}\\ \end{bmatrix}. \end{aligned}$$
(21)

Considering small squeezing \(r \ll 1\), one can set \(b,c=0\) and find the following analytical expression for the density matrix of the two-qubi system

$$\begin{aligned} \rho _{11}(t)= & {} \rho _{11} e^{-4at}, \\ \nonumber \rho _{12}(t)= & {} \frac{1}{2}\rho _{12} (e^{-4at}+e^{-2at})+\frac{1}{2}\rho _{13} (e^{-4at}-e^{-2at}), \\ \nonumber \rho _{13}(t)= & {} \frac{1}{2}\rho _{12} (e^{-4at}-e^{-2at})+\frac{1}{2}\rho _{13} (e^{-4at}+e^{-2at}), \\ \nonumber \rho _{14}(t)= & {} \rho _{14} e^{-2at}, \\ \nonumber \rho _{22}(t)= & {} 2\rho _{11} e^{-4at}at+\frac{e^{-4at}}{4}(\rho _{22}+\rho _{23}+\rho _{32}+\rho _{33})+\frac{e^{-2at}}{2}(\rho _{22}-\rho _{33})\\ \nonumber{} & {} +\frac{1}{4}(\rho _{22}-\rho _{23}-\rho _{32}+\rho _{33}), \\ \nonumber \rho _{23}(t)= & {} 2\rho _{11} e^{-4at}at+\frac{e^{-4at}}{4}(\rho _{22}+\rho _{23}+\rho _{32}+\rho _{33})+\frac{e^{-2at}}{2}(\rho _{23}-\rho _{32}), \\ \nonumber \rho _{24}(t)= & {} -e^{-4at}(\rho _{12}+\rho _{13})+\frac{e^{-2at}}{2}(2\rho _{12}+2\rho _{13}+\rho _{24}+\rho _{34})+\frac{1}{2}(\rho _{24}-\rho _{34}), \\ \nonumber \rho _{33}(t)= & {} 2\rho _{11} e^{-4at}at+\frac{e^{-4at}}{4}(\rho _{22}+\rho _{23}+\rho _{32}+\rho _{33})-\frac{e^{-2at}}{2}(\rho _{22}-\rho _{33})\\ \nonumber{} & {} +\frac{1}{4}(\rho _{22}-\rho _{23}-\rho _{32}+\rho _{33}), \\ \nonumber \rho _{34}(t)= & {} -e^{-4at}(\rho _{12}+\rho _{13})+\frac{e^{-2at}}{2}(2\rho _{12}+2\rho _{13}+\rho _{24}+\rho _{34})-\frac{1}{2}(\rho _{24}-\rho _{34}), \\ \nonumber \rho _{44}(t)= & {} \rho _{11}(1-4e^{-4at}at)-e^{-4at}(\rho _{22}+\rho _{23}+\rho _{32}+\rho _{33})\\ \nonumber{} & {} +\frac{1}{2}(2\rho _{11}+\rho _{22}+\rho _{23}+\rho _{32}+\rho _{33}+2\rho _{44}). \end{aligned}$$
(22)

where \(\rho _{ji}(t)= \rho _{ij}^*(t)\) and also \(\rho _{11}(t)+\rho _{22}(t)+\rho _{33}(t)+\rho _{44}(t)=1\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemian, E. Quantum State Engineering for Dissipative Quantum Computation Via a Two-Qubit System Plunged in a Global Squeezed Vacuum Field Reservoir. Int J Theor Phys 62, 141 (2023). https://doi.org/10.1007/s10773-023-05395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05395-9

Keywords

Navigation