Skip to main content
Log in

How Distorting the Trajectories of Quantum Particles Shapes the Statistical Properties of their Ensemble

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present universal statistical relations between the center of mass of a quantum ensemble and its sub-ensembles when the Bohmian trajectories of the particles are distorted. These relations break the additivity property of the expectation into subadditivity of the distorted expectation, which obtains an evident difference between the various ways to infer quantum expectations. The results do not depend on the form of the Hamiltonian, and do not have a classical parallel. While an experimentalist can arrange the distortion of the trajectories to produce the proposed relations, such distortion may naturally appear in standard experimental setups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Oriols, X., Mompart, J.: Overview of Bohmian mechanics. In Applied Bohmian Mechanics pp. 19–166. Jenny Stanford Publishing (2019)

  2. Bohm, D.: A suggested interpretation of the quantum theoryin terms of" hidden” variables. I. Phys. Rev. 85, 166 (1952)

  3. Coffey, T.M., Wyatt, R.E., Schieve, W.C.: Monte Carlo generation of Bohmian trajectories. J. Phys. A Math. Theor. 41,(2008)

  4. Brandt, S., Dahmen, H.D., Gjonaj, E., Stroh, T.: Quantile motion and tunneling. Physics Letters A 249, 265–270 (1998)

    Article  ADS  Google Scholar 

  5. Douguet, N., Bartschat, K.: Dynamics of tunneling ionization using Bohmian mechanics. Phys. Rev. A 97(1), 013402 (2018)

  6. Mahler, D.H., Rozema, L., Fisher, K., Vermeyden, L., Resch, K.J., Wiseman, H.M., Steinberg, A.: Experimental nonlocal and surreal Bohmian trajectories. Science advances 2(2), e1501466 (2016)

    Article  ADS  Google Scholar 

  7. Wirch, J.L., Hardy, M.R.: Distortion risk measures: Coherence and stochastic dominance. In International congress on insurance: Mathematics and Economics, 15-17 (2001)

  8. Balbás, A., Garrido, J., Mayoral, S.: Properties of distortion risk measures. Methodology and Computing in Applied Probability 11(3), 385–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guegan, D., Hassani, B.: Distortion risk measure or the transformation of unimodal distributions into multimodal functions. Future Perspectives in Risk Models And Finance 71–88. Springer, Cham (2015)

  10. Sereda, E.N., Bronshtein, E.M., Rachev, S.T., Fabozzi, F.J., Sun, W., Stoyanov, S.V.: Distortion risk measures in portfolio optimization. In: Handbook of Portfolio Construction 649–673. Springer, Boston, MA (2010)

  11. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Financ. 9, 203–228 (1999)

  12. Wong, L.J., Rivera, N., Murdia, C., Christensen, T., Joannopoulos, J.D., Soljačić, M., Kaminer, I.: Control of quantum electrodynamical processes by shaping electron wavepackets. Nature Communications 12(1), 1700 (2021)

    Article  ADS  Google Scholar 

  13. Weinacht, T.C., Ahn, J., Bucksbaum, P.H.: Controlling the shape of a quantum wavefunction. Nature 397, 233–235 (1999)

    Article  ADS  Google Scholar 

  14. Noel, M.W., Stroud, C.R.: Shaping an atomic electron wave packet. Optics Express 1, 176–185 (1997)

    Article  ADS  Google Scholar 

  15. Amit, G., Japha, Y., Shushi, T., Folman, R., Cohen, E.: Countering a fundamental law of attraction with quantum wavepacket engineering. Physical Review Research, Accepted (2022)

    Google Scholar 

  16. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

  17. Aharonov, Y., Shushi, T.: Complex-Valued Classical Behavior from the Correspondence Limit of Quantum Mechanics with Two Boundary Conditions. Found. Phys. 52, 1–7 (2022)

  18. Aharonov, Y., Vaidman, L.: The two-state vector formalism: an updated review. Time in Quantum Mechanics 399–447 (2008)

  19. Cujia, K.S., Boss, J.M., Herb, K., Zopes, J., Degen, C.L.: Tracking the precession of single nuclear spins by weak measurements. Nature 571, 230–233 (2019)

    Article  Google Scholar 

  20. Foo, J., Asmodelle, E., Lund, A.P., Ralph, T.C.: Relativistic Bohmian trajectories of photons via weak measurements. Nat. Commun. 13, 1–11 (2022)

    Article  Google Scholar 

  21. Wiseman, H.M.: Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation. Phys. Rev. A 65,(2002)

  22. Brandt, S., Dahmen, H.D.: The Picture Book of Quantum Mechanics. Springer Science & Business Media (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomer Shushi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

From the definition of expectation of a continuous random variable X, we have \(E\left( X\right) =\int _{-\infty }^{\infty }xdF_{X}\left( x\right) .\) Taking the transformation \(q=F\left( x\right) ,\) we have \(dq=f_{X}\left( x\right) dx,\) implying the desired formula for expectation \(E\left( X\right) =\int _{0}^{1}x_{q}dq,\) where \(x_{q}\) is the \(q-th\) quantile of X\(x_{q}=F_{X}^{-1}\left( q\right) .\)

Appendix 2

Let us prove the subadditivity property of the distorted mean CoM. Our first step is to rewrite the function D,  in the integral form \(D\left( q\right) =\int _{0}^{q}d\mu \left( \alpha \right) .\) By substituting this into (4), we get

$$\begin{aligned} \left\langle x\left( t\right) \right\rangle _{D}&=\int _{0}^{1}F_{X} ^{-1}\left( q\right) \int _{0}^{q}d\mu \left( \alpha \right) dq\\&=\int _{0}^{1}F_{X}^{-1}\left( q\right) \int _{0}^{1}d\mu \left( \alpha \right) \cdot H\left( q-\alpha \right) dq\nonumber \end{aligned}$$
(15)

where \(H\left( q-\alpha \right) \) is the Heaviside step function

$$\begin{aligned} \left\langle x\left( t\right) \right\rangle _{D}&=\int _{0}^{1}\left( \int _{0}^{1}F_{X}^{-1}\left( q\right) H\left( q-\alpha \right) dq\right) d\mu \left( \alpha \right) \nonumber \\&=\int _{0}^{1}\left( 1-\alpha \right) d\mu \left( \alpha \right) \cdot \rho _{\alpha }\left( X\right) , \end{aligned}$$
(16)

where

$$\begin{aligned} \rho _{\alpha }\left( X\right) =\frac{1}{1-\alpha }\int _{\alpha }^{1}F_{X}^{-1}\left( q\right) dq, \end{aligned}$$
(17)

Let us note that (16) is the weighted-sum of all \(\rho _{\alpha }\left( X\right) \) in the region \(\alpha \in \left( 0,1\right) ,\) which can be proved via the relations

$$\begin{aligned} 1&=\int _{0}^{1}D\left( q\right) dq=\int _{0}^{1}dq\int _{0}^{q}d\mu \left( \alpha \right) =\int _{0}^{1}dq\int _{0}^{1}d\mu \left( \alpha \right) H\left( q-\alpha \right) \\&=\int _{0}^{1}dq\int _{0}^{1}d\mu \left( \alpha \right) H\left( q-\alpha \right) =\int _{0}^{1}d\mu \left( \alpha \right) \int _{\alpha }^{1}dq=\int _{0}^{1}d\mu \left( \alpha \right) \cdot \left( 1-\alpha \right) \nonumber \end{aligned}$$
(18)

as \(\int _{0}^{1}d\mu \left( \alpha \right) \left( 1-\alpha \right) =1,\) \(d\mu \left( \alpha \right) \left( 1-\alpha \right) \) serve as weights. Thus, if we prove that \(\rho _{\alpha }\) is subadditive, it immediately implies that \(\left\langle x\left( t\right) \right\rangle _{D}\) is subadditive. Now, for proving subadditivity, we consider the bivariate pdf \(\rho _{X_{1},X_{2} }\left( x_{1},x_{2}\right) \) and, without loss of generality, we consider the sum \(Z=X_{1}+X_{2}.\) We note that we can always consider convex sum with coefficients, with taking \(X_{j}=m_{j}\widetilde{X}_{j}.\)

From the definition of \(\rho _{\alpha },\) we have

$$\begin{aligned}&\left( 1-\alpha \right) \cdot \left( \rho _{\alpha }\left( X_{1}\right) +\rho _{\alpha }\left( X_{2}\right) -\rho _{\alpha }\left( Z\right) \right) \\&=E\left( X_{1}\cdot H\left( F_{X_{1}}\left( X_{1}\right) \ge \alpha \right) +X_{2}\cdot H\left( F_{X_{2}}\left( X_{2}\right) \ge \alpha \right) -Z\cdot H\left( F_{Z}\left( Z\right) \ge \alpha \right) \right) \nonumber \end{aligned}$$
(19)

and after some algebraic calculations, we get

$$\begin{aligned}&\left( 1-\alpha \right) \cdot \left( \rho _{\alpha }\left( X_{1}\right) +\rho _{\alpha }\left( X_{2}\right) -\rho _{\alpha }\left( Z\right) \right) \\&=E\left( X_{1}\left( H\left( X_{1}\ge F_{X_{1}}^{-1}\left( \alpha \right) \right) -H\left( Z\ge F_{Z}^{-1}\left( \alpha \right) \right) \right) \right) \nonumber \\&+E\left( X_{2}\left( H\left( X_{2}\ge F_{X_{2}}^{-1}\left( \alpha \right) \right) -H\left( Z\ge F_{Z}^{-1}\left( \alpha \right) \right) \right) \right) .\nonumber \end{aligned}$$
(20)

Let us now define

$$\begin{aligned} K_{X_{1}}=\left( X_{1}-F_{X_{1}}^{-1}\left( \alpha \right) \right) \cdot \left( H\left( X_{1}\ge F_{X_{1}}^{-1}\left( \alpha \right) \right) -H\left( Z\ge F_{Z}^{-1}\left( \alpha \right) \right) \right) . \end{aligned}$$
(21)

In case \(X>F_{X_{1}}^{-1}\left( \alpha \right) \) we have \(H\left( X_{1}\ge F_{X_{1}}^{-1}\left( \alpha \right) \right) =1\) so, \(K_{X_{1}}\ge 0\), and if \(X_{1}<F_{X_{1}}^{-1}\left( \alpha \right) \) we have \(H\left( X_{1}\ge F_{X_{1}}^{-1}\left( \alpha \right) \right) =0.\) For the equality \(X_{1}=F_{X_{1}}^{-1}\left( q\right) ,\) we get \(K_{X_{1}}=0.\) Thus, in general, \(K_{X_{1}}\ge 0.\) This, of course, also holds for \(X_{2}.\) We thus conclude that

$$\begin{aligned}&\left( 1-\alpha \right) \cdot \left( \rho _{\alpha }\left( X_{1}\right) +\rho _{\alpha }\left( X_{2}\right) -\rho _{\alpha }\left( Z\right) \right) \\&=E\left( X\left( H\left( X\ge F_{X}^{-1}\left( \alpha \right) \right) -H\left( Z\ge F_{Z}^{-1}\left( \alpha \right) \right) \right) \right) \nonumber \\&+E\left( Y\left( H\left( Y\ge F_{Y}^{-1}\left( \alpha \right) \right) -H\left( Z\ge F_{Z}^{-1}\left( \alpha \right) \right) \right) \right) \nonumber \\&\ge F_{X}^{-1}\left( \alpha \right) E\left( H\left( X\ge F_{X}^{-1}\left( \alpha \right) \right) -H\left( Z\ge F_{Z}^{-1}\left( \alpha \right) \right) \right) \nonumber \\&+F_{Y}^{-1}\left( q\right) E\left( H\left( Y\ge F_{Y}^{-1}\left( \alpha \right) \right) -H\left( Z\ge F_{Z}^{-1}\left( \alpha \right) \right) \right) \nonumber \\&=F_{X}^{-1}\left( \alpha \right) \cdot \left( \alpha -\alpha \right) +F_{Y}^{-1}\left( \alpha \right) \cdot \left( \alpha -\alpha \right) =0.\nonumber \end{aligned}$$
(22)

This shows the subadditivity of \(\rho _{\alpha },\)

$$\begin{aligned} \rho _{\alpha }\left( X_{1}+X_{2}\right) \le \rho _{\alpha }\left( X_{1}\right) +\rho _{\alpha }\left( X_{2}\right) . \end{aligned}$$
(23)

Now, for the case of N particles, the multivariate pdf is denoted by \(\rho \left( x_{1},x_{2},...,x_{N};t\right) ,\) followed by the wavefunction of the coupled N particles, \(\psi \left( x_{1},x_{2},...,x_{N};t\right) .\) The relations (8) can be immediately deduced by partitioning the CoM \(\overline{x}_{{\text {col}}}:=\frac{1}{M}\sum _{j=1}^{N}m_{j}x_{j}\) to sum of two random variables, e.g., taking \(\overline{x}_{{\text {col}} }:=\frac{1}{M}m_{1}X_{1}+Y,\) where \(Y=\frac{1}{M}\sum _{j=2}^{N}m_{j}X_{j},\) we get the subadditivity relations \(\rho _{\alpha }\left( X_{1}+Y\right) \le \rho _{\alpha }\left( X_{1}\right) +\rho _{\alpha }\left( Y\right) .\) We again, recall that such a property is well-studied in the literature of risk theory [7, 8].

Appendix 3

Following the Gaussian pdf (11), any weighted-sum \(\sum _{j=1} ^{N}w_{j}X_{j}\) is a Gaussian random variable, with mean \(\sum _{j=1}^{N} w_{j}\left\langle x_{j}\left( t\right) \right\rangle \) and variance \(\sum _{j=1}^{N}w_{j}^{2}\sigma _{j}\left( t\right) ^{2}.\) For any Gaussian random variable with mean \(\mu \) and variance \(\sigma ^{2},\) the distorted expectation (10) can be computed explicitely. Namely,

$$\begin{aligned} \left\langle X\right\rangle _{D}&=E\left( X|X\ge x_{q_{0}}\right) =\frac{\int _{x_{q_{0}}}^{\infty }xf_{X}\left( x\right) dx}{1-q_{0}}\end{aligned}$$
(24)
$$\begin{aligned}&=\frac{\int _{x_{q_{0}}}^{\infty }x\frac{1}{\sqrt{2\pi }\sigma }\exp \left( -\frac{1}{2}\left( \frac{x-\mu }{\sigma }\right) ^{2}\right) dx}{1-q_{0}}, \end{aligned}$$
(25)

where \(x_{q_{0}}=F_{X}^{-1}\left( q_{0}\right) .\) Taking the transformation \(Z=\left( X-\mu \right) /\sigma ,\) we finally obtain

$$\begin{aligned} \left\langle X\right\rangle _{D}=\mu +\frac{\sigma }{\sqrt{2\pi }}\frac{\int _{x_{q_{0}}}^{\infty }z\exp \left( -\frac{1}{2}z^{2}\right) dz}{1-q_{0} }=\mu +\frac{\sigma }{1-q_{0}}\frac{1}{\sqrt{2\pi }}e^{-z_{q_{0}}^{2}/2}. \end{aligned}$$
(26)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shushi, T. How Distorting the Trajectories of Quantum Particles Shapes the Statistical Properties of their Ensemble. Int J Theor Phys 62, 110 (2023). https://doi.org/10.1007/s10773-023-05359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05359-z

Keywords

Navigation