Skip to main content
Log in

Ensemble in phase space: Statistical formalism of quantum mechanics

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We present an alternative formalism of quantum mechanics tailored to statistical ensemble in phase space. The purpose of our work is to show that it is possible to establish an alternative autonomous formalism of quantum mechanics in phase space using statistical methodology. The adopted perspective leads to obtaining within the framework of its theory the fundamental quantum-mechanical equation without recourse to the other formulations of quantum mechanics, and gives the idea for operators pertaining to dynamical quantities. The derivation of this equation starts with the ensemble in phase space and, as a result, reproduces Liouville’s theorem and virial theorem for quantum mechanics. We have explained with the help of this equation the structure of quantum mechanics in phase space and the approximation to the Schrödinger equation. Furthermore, we have shown that this formalism provides reasonable results of quantisation such as the quantisation of harmonic oscillation, the two-slit interference and the uncertainty relation. In particular, we have demonstrated that this formalism can easily give the relativistic wave equation without using the linearisation of the Hamiltonian operator. The ultimate outcome this formalism produces is that primary and general matters of quantum mechanics can be studied reasonably within the framework of statistical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E Wigner, Phys. Rev. 40, 749 (1932)

    Article  ADS  Google Scholar 

  2. H Groenewold, Physica 12, 405 (1946)

    Article  ADS  MathSciNet  Google Scholar 

  3. C K Zachos, Quantum mechanics in phase space (World Scientific, New Jersey, 2005) p. 1

    Google Scholar 

  4. R P Feynman, Phys. Rev. 80, 440 (1950)

    Article  ADS  Google Scholar 

  5. J V Neuman, Math. Ann. 104, 570 (1931)

    Article  MathSciNet  Google Scholar 

  6. S Goldstein, Phys. Today 51, 38 (1998)

  7. S Goldstein, R Tumulka and N Zanghì, Bohmian trajectories as the foundation of quantum mechanics, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 1

  8. D Home and A Whitaker, Einstein’s struggles with quantum theory (Springer, Berlin, 2007) Chapters 3, 8, 10

  9. P Riggs, Quantum causality (Springer, Berlin, 2009) Chapters 3 and 4

  10. R E Wyatt, Quantum dynamics with trajectories (Springer, Berlin, 2005) Chapters 2–4, p. 11

  11. J Moyal, Proc. Camb. Philos. Soc. 45, 99 (1949)

    Article  ADS  Google Scholar 

  12. T Takabayasi, Prog. Theor. Phys. 8, 143 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  13. D Bohm, Phys. Rev. 85, 166, 180 (1952)

    Article  ADS  Google Scholar 

  14. V E Madelung, Z. Phys. 40, 322 (1926)

    Article  ADS  Google Scholar 

  15. V I Sbitnev, Bohmian trajectories and the path integral paradigm-complexified Lagrangian mechanics, in: Theoretical concepts of quantum mechanics edited by M R Pahlavani (InTech, Croatia, 2012) p. 313

  16. Á S Sanz and S Miret-Artés, An account of quantum interference from a hydrodynamical perspective, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 197

  17. K H Hughes and I Burghardt, A hybrid hydrodynamic-Liouvillian approach to non-Markovian dynamics, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 163

  18. A Tilbi, T Boudjedaa and Merad, Pramana – J. Phys. 87(5): 66 (2016)

  19. D Dürr and S Teufel, Bohmian mechanics (Springer, Berlin, 2009) Chapters 9, 16

  20. C Meier, J A Beswick and T Yefsah, Mixed quantum\(/\)classical dynamics: Bohmian and DVR stochastic trajectories, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 149

  21. S K Ghosh, Quantum fluid dynamics within the framework of density functional theory, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 183

  22. C Chou and R E Wyatt, Recent analytical studies of complex quantum trajectories, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 283

  23. F Rahmani, M Goldshani and M Sarbishel, Pramana – J. Phys. 86(4), 747 (2016)

    Article  ADS  Google Scholar 

  24. F Rahmani, M Goldshani and M Sarbishel, Pramana – J. Phys. 87(2): 23 (2016)

    Article  ADS  Google Scholar 

  25. B Poirier, Trajectory-based theory of relativistic quantum particles, arXiv:1208.6260v1 [quant-ph]

  26. D Campos, Pramana – J. Phys. 88(3): 54 (2017)

    Article  ADS  Google Scholar 

  27. D Campos, Pramana – J. Phys. 87(2): 27 (2016)

    Article  ADS  Google Scholar 

  28. H Weyl, Z. Phys. 46, 1 (1927)

    Article  ADS  Google Scholar 

  29. G Baker, Phys. Rev. 109, 2198 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  30. T Takabayasi, Prog. Theor. Phys. 11, 341 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  31. D Fairlie, Proc. Camb. Philos. Soc. 60, 581 (1964)

    Article  ADS  Google Scholar 

  32. A Royer, Phys. Rev. A 15, 449 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  33. J Dahl, Mol. Phys. 47, 1001 (1982)

    Article  ADS  Google Scholar 

  34. T Curtright and C Zachos, Mod. Phys. Lett. A 16, 2381 (2001)

    Article  ADS  Google Scholar 

  35. G J Iafrate, H L Grubin and D K Ferry, J. Phys. Colloq. 42, 307 (1981)

    Article  Google Scholar 

  36. C L Gardner, SIAM J. Appl. Math. 54, 409 (1994)

  37. I Gasser and P A Markowich, Asym. Anal. 14, 97 (1997)

    Google Scholar 

  38. J G Muga, R Sala and R F Snider, Phys. Scr. 47, 732 (1993)

    Article  ADS  Google Scholar 

  39. G Torres-Vega and J H Frederick, J. Chem. Phys. 93(12), 8862 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  40. W P Schleich, Quantum optics in phase space (Wiley-VCH, Berlin, 2001) Chapter 8

    Book  Google Scholar 

  41. I Burghardt and L S Cederbaum J. Chem. Phys. 115, 10303, 10312 (2001)

    Article  ADS  Google Scholar 

  42. I Burghardt and K B Moller J. Chem. Phys. 115, 10312 (2001)

    Article  ADS  Google Scholar 

  43. J B Maddox and E R Bittner, J. Phys. Chem. B 106, 7981 (2002)

    Article  Google Scholar 

  44. E R Bittner, J B Maddox and I Burghardt, Int. J. Quantum Chem. 89, 313 (2002)

    Article  Google Scholar 

  45. S De Nicola, R Fedele, M A Manko and V I Manko, Theor. Math. Phys. 152, 1081 (2007)

    Article  Google Scholar 

  46. R A Monsa et al, Phys. Lett. A 315, 418 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  47. A S Arkhipov and Yu E Lozovik, J. Exp. Theor. Phys. 98(2), 261 (2004)

    Article  ADS  Google Scholar 

  48. V Madhoc, C A Riofrio and I Deutsch, Pramana – J. Phys. 87(5): 65 (2016)

    Google Scholar 

  49. T Curtright, T Uematsu and C Zachos, J. Math. Phys. 42, 2396 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  50. R P Feynman and A R Hibbs, Quantum mechanics and path integrals (McGraw-Hill, New York, 1965) Chapters 1 and 2

  51. W Greiner, Quantum mechanics an introduction (Springer, Berlin, 2001) Chapter 6

    MATH  Google Scholar 

  52. L D Landau and E M Lifshitz, Quantum mechanics non-relativistic theory (Pergamon Press, Oxford, 1991) Chapter 3

    MATH  Google Scholar 

  53. A Donoso and C C Martens Phys. Rev. Lett. 87, 223202 (2001)

    Article  ADS  Google Scholar 

  54. A Donoso, Y Zheng and C C Martens J. Chem. Phys. 119, 5010 (2003)

  55. B Poirier, Bipolar quantum trajectory methods, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 235

  56. P R Holland, The quantum theory of motion (Cambridge University Press, Cambridge, 1993) Chapter 2

    Book  Google Scholar 

  57. G E Bowman, The utility of quantum forces, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 87

  58. M A B Whitaker, Found. Phys. 37, 989 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  59. S Á Sanz and S Miret-Artés, A trajectory description of quantum processes. II. Applications (Springer-Verlag, Berlin, Heidelberg, 2014) Chapter 2

    Book  Google Scholar 

  60. R Penrose, The road to reality (Jonathan Cape, London, 2004) Chapter 21

    Google Scholar 

  61. B Dutta, N Mukun and R Simon, Pramana – J. Phys. 45(6), 471 (1995)

  62. A S Holevo, Statistical structure of quantum mechanics (Springer, Berlin, 2001) Chapters 1 and 2

  63. A E Faraggi and M Matone, The equivalence postulate of quantum mechanics: Main theorems, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 17

  64. E R Floyd, Quantum trajectories and entanglement, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 41

  65. E R Bittner and D J Kour, Quantum dynamics and supersymmetric quantum mechanics, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 53

  66. P Holland, Quantum field dynamics from trajectories, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 73

Download references

Acknowledgements

This work was supported partially by the Committee of Education, Democratic People’s Republic of Korea, under the project entitled ‘Statistical Formalism of Quantum Mechanics’. The authors thank Profs Chol-Jun Yu and Hak-Chol Pak from Kim Il Sung University and Profs Il-Hwan Kim and Se-Hun Ryang from the University of Science for their advice and help. Prof. Nam-Hyok Kim from Kim Il Sung University and Prof. Yon-Il Kim from the State Academy, DPR Korea, are appreciated for valuable discussion. The authors would like to thank the editors and anonymous reviewers for their comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chol Jong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jong, C., Ri, BI., Yu, GD. et al. Ensemble in phase space: Statistical formalism of quantum mechanics. Pramana - J Phys 92, 83 (2019). https://doi.org/10.1007/s12043-019-1743-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1743-1

Keywords

PACS Nos

Navigation